Cho tứ giác ABCD có hai đường chéo AC và BD bằng nhau. Gọi M,N,H,K lần lượt là trung điểm của các cạnh AB,BC,CD,DA.
a/CM: tứ giác MNHK là hình thoi.
b/Để hình thoi MNHK là hình vuông thì tứ giác ABCD cần có thêm điều kiện gì?
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Vì sao ?
cho hình bình hành ABCD có AC vuông góc với AD. Gọi E, F lần lượt là trung điểm của AB, CD. Cm tứ giác AEDF là hình thoi.
Bài 1. Cho hình thoi ABCD . Trên hai cạnh BC , CD lần lượt lấy hai điểm M và N sao cho
BM DN . Gọi P Q ; | thứ tự là giao điểm của AM và AN với đường chéo BD . Chứng minh rằng: |
1.1. BAM DAN | 1.2.Tứ giác APDQ là hình thoi. |
Cho tam giác ABC vuông tại A(AB < AC), AH là đường cao. Gọi E là điểm đối xứng của A qua BC, D là điểm đối xứng của B qua H, K là giao điểm của ED và AC , J là hình chiếu của D trên AB. Gọi I là trung điểm của AC. Đường thẳng kẻ từ C song song với AD cắt DI tại F. Chứng minh:
a)Tứgiác ABED là hình thoi.
b)Tứgiác AJDK là hình chữ nhật .
c) HJ vuông góc HK .
d)Tứgiác ADCF là hình bình hành.
e)Tứgiác ABCF là hình thang cân .
Cho hình thoi ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA.
Chứng minh EFGH là hình bình hành
Bài 134. Cho hình thang cân ABCD đáy nhỏ là AB. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.
a) Chứng minh tứ giác EFGH là hình thoi.
b) Gọi O là giao điểm của hai đường chéo của hình thang cân . Chứng minh E, O, G thẳng hàng.
Bài 11: Cho hình bình hành ABCD có hat DAC =90^ 0 . Gọi M và N lần lượt là trung điểm của AB,CD . a) Chứng minh: AM=CN;AN=CN b) Chứng minh tứ giác AMCN là hình thoi c) Biết MN=6 cm;AC=8 cm . Tính độ dài của AN
Cho ∆ABC, vuông tại A,(AC>AB)đường trung tuyến AM ,gọi D là trung điểm của AB gọi E là điểm đối xứng của M qua D a, chứng minh rằng :MD vuông góc AB b,chứng minh tứ giác AMBE là hình thoi c,cho BC=9cm,AC=7cm tính chu vi của hình thoi AMBE d, tính diện tích của tam giác ABC
Bài 1. Cho hình thoi ABCD . Trên hai cạnh BC , CD lần lượt lấy hai điểm M và N sao cho
BM DN . Gọi P Q ; | thứ tự là giao điểm của AM và AN với đường chéo BD . Chứng minh rằng: |
1.1. BAM DAN | 1.2.Tứ giác APDQ là hình thoi. |
Bài 2. Cho hình bình hành ABCD có AB AC . Gọi I là trung điểm của BC , trên tia AI lấy điểm
E sao cho I là trung điểm của AE .
2.1. Chứng minh ABEC là hình thoi.
2.2. Chứng minh D C E ; ; thẳng hàng.
2.3. Tính số đo DAE
Bài 3. Cho hình bình hành ABCD có AB bằng đường chéo AC . Gọi O là trung điểm của BC trên tia
AO lấy điểm E sao cho O là trung điểm của AE . Đường thẳng vuông góc với AE tại E cắt AC tại
F.
3.1. Chứng minh ABEC là hình thoi
3.2. Chứng minh tứ giác ADFE là hình chữ nhật
3.3. Vẽ AI CD tại I . Chứng minh rằng nếu AI AO thì AC BD và ABO 60
Bài 4. Cho hình bình hành ABCD .Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho
AM DN . Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.
4.1. Chứng minh AB là đường trung trực của EF .
4.2. Chứng minh tứ giác MEBF là hình thoi.
4.3. Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
Bài 5. Cho tam giác ABC cân tại A. Đường trung tuyến AM , trên tia AM lấy điểm D sao cho M là
trung điểm của AD .Gọi K là trung điểm của MC ,trên tia DK lấy điểm E sao cho K là trung điểm của
ED .
5.1. Chứng minh tứ giác ABDC là hình thoi .
5.2. Chứng minh tứ giác AMCE là hình chữ nhật.
5.3. Gọi I là giao điểm của AM và BE . Chứng minh I là trung điểm của BE .
5.4. Chứng minh rằng: AK ; CI ; EM đồng quy.