Bài 4: Đường trung bình của tam giác, hình thang

AH

ChhìnthancâABCD(AB//CD).AB=6cm,CD=10cm.AcBt
a)ChnmintagiáOAcâ
b)GM,llưlà trunđicAvà BtínMN.

LL
2 tháng 10 2021 lúc 9:26

a) Ta có: AB//CD(ABCD là hthang cân)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{OAB}=\widehat{ODC}\\\widehat{OBA}=\widehat{OCD}\end{matrix}\right.\)

Mà \(\widehat{ODC}=\widehat{OCD}\)(ABCD là hthang cân)

\(\Rightarrow\widehat{OBA}=\widehat{OAB}\)

=> Tam giác OAB cân tại O

b) Xét hthang ABCD có:

M là trung điểm AD(gt)

N là trung điểm BC(gt)

=> MN là đường trung bình

=> \(MN=\dfrac{AB+CD}{2}=\dfrac{6+10}{2}=8\left(cm\right)\)

Bình luận (1)
NM
2 tháng 10 2021 lúc 9:32

\(a,AB//CD\Rightarrow\widehat{A_1}=\widehat{D};\widehat{B_1}=\widehat{C}\left(so.le.trong\right)\)

Mà \(\widehat{C}=\widehat{D}\left(hthang.cân.ABCD\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{B_1}\)

Vậy tam giác OAB cân tại O

\(b,\left\{{}\begin{matrix}AM=MD\\BN=NC\end{matrix}\right.\Rightarrow MN\) là đtb hình thang ABCD

\(\Rightarrow MN=\dfrac{1}{2}\left(AB+CD\right)=8\left(cm\right)\)

Bình luận (2)
NT
2 tháng 10 2021 lúc 9:36

a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)

\(\widehat{OBA}=\widehat{OCD}\)

mà \(\widehat{ODC}=\widehat{OCD}\)

nên \(\widehat{OAB}=\widehat{OBA}\)

hay ΔOAB cân tại O

b: Xét hình thang ABCD có 

M là trung điểm của AD

N là trung điểm của BC

Do đó: MN là đường trung bình của hình thang ABCD

Suy ra: \(MN=\dfrac{AB+CD}{2}=8\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
RT
Xem chi tiết
RT
Xem chi tiết
AH
Xem chi tiết
NL
Xem chi tiết
TB
Xem chi tiết
TT
Xem chi tiết
RT
Xem chi tiết
H24
Xem chi tiết