PB

Hình thang ABCD có AB // CD; AB = a, BC = b, CD = c, DA = d. Các đường phân giác của góc ngoài đỉnh A và D cắt nhau tại M, các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N. Chứng minh rằng MN // CD

CT
28 tháng 12 2018 lúc 5:45

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi M' và N' là giao điểm của tia AM và BN với CD.

Ta có: ∠ (M') = ∠ A 2 (sole trong)

∠ A 1 =  ∠ A 2 (gt)

⇒  ∠ (M') =  ∠ A 1 nên ∆ ADM' cân tại D

* DM là phân giác của  ∠ (ADM' )

Suy ra: DM là đường trung tuyến (tính chất tam giác cân)

⇒ AM = MM'

∠ (N') =  ∠ B 1 nên  ∆ BCN' cân tại C.

* CN là phân giác của  ∠ (BCN')

Suy ra: CN là đường trung tuyến (tính chất tam giác cân)

⇒ BN = NN'

Suy ra: MN là đường trung bình của hình thang ABN'M'

⇒ MN // M'N' (tính chất đường trung hình hình thang)

Hay MN//CD

Bình luận (0)

Các câu hỏi tương tự
OM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
GP
Xem chi tiết
TT
Xem chi tiết
VL
Xem chi tiết