Bài 9: Hình chữ nhật

DT

Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Lấy điểm M thuộc đoạn thẳng OC. Gọi E, F lần lượt là hình chiếu của điểm M trên đường thẳng AB, AD. Chứng minh:
a) Tứ giác AEMF là hình chữ nhật.
b) BD // EF.
+ vẽ hình nhé 

NT
11 tháng 1 2024 lúc 20:02

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\)

=>AEMF là hình chữ nhật

b:

Ta có: MF\(\perp\)AD

DC\(\perp\)AD

Do đó: MF//DC

Ta có: AEMF là hình chữ nhật

=>\(\widehat{AEF}=\widehat{AMF}\)

mà \(\widehat{AMF}=\widehat{ACD}\)(hai góc đồng vị, MF//CD)

nên \(\widehat{AEF}=\widehat{ACD}\)

Ta có: ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường và AC=BD

=>O là trung điểm chung của AC và BD và AC=BD

=>OA=OB=OC=OD

Xét ΔACD vuông tại D và ΔCAB vuông tại B có

CA chung

AD=CB

Do đó: ΔACD=ΔCAB

=>\(\widehat{ACD}=\widehat{CAB}\)

mà \(\widehat{CAB}=\widehat{OAB}=\widehat{OBA}\)(ΔOAB cân tại O)

nên \(\widehat{ACD}=\widehat{ABD}\)

=>\(\widehat{AEF}=\widehat{ABD}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên EF//BD

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VA
Xem chi tiết
VA
Xem chi tiết
DT
Xem chi tiết
LC
Xem chi tiết
NL
Xem chi tiết
LH
Xem chi tiết
TA
Xem chi tiết
PH
Xem chi tiết