Cho hình bình hành ABCD có ac<bd. Từ A kẻ AH vuông góc với BD. Từ C kẻ CK vuông góc với BD. Gọi O là trung điểm BD
a) Chứng minh: AHCK là hình bình hành, từ đó suy ra OH=CK
b) Chứng minh: HD=BK
Cho hình bình hành ABCD, kẻ AH vuông góc với BD tại H, kẻ CK vuông góc với BD tại K
a) Chứng minh AHCK là hình bình hành
b) Gọi I là trung điểm của HK, chứng minh IB = ID
Cho hình bình hành ABCD, Có hai đường chéo AC và BD cắt nhau tại O. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD. Chứng minh rằng Tứ giác AECF là hình bình hành.
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N
a, Chứng minh tứ giác amhn là hình chữ nhật
b, lấy điểm K sao cho n là trung điểm của HK Chứng minh tứ giác amnk là hình bình hành
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N
a, Chứng minh tứ giác amhn là hình chữ nhật
b, lấy điểm K sao cho n là trung điểm của HK Chứng minh tứ giác amnk là hình bình hành
Cho hình bình hành ABCD,hai đường chéo AC,BD cắt nhau tại O.Kẻ BH vuông góc AC tại H,cắt DC tại N và kẻ DK vuông góc AC tại K cắt AB tại M.CMR:
a,Tứ giác BMDN là hình bình hành ;
b,Tứ giác BKDH là hình bình hành;
c,AC,BD,MN đồng quy
cho hình thang vuông ABCD ( góc A = góc D = 90 độ); AB =1/2 CD; kẻ DH vuông góc CB.Gọi M là trung điểm DH;N là trung điểm HC. câu a) c/m tam giác ABNM là hình bình hành
Cho hình bình hành ABCD có góc A từ và AB>BC.Kẻ AH vuông góc với DC tại H,CK vuông góc với AB tại K.a,Tứ giác AKCH là hình gì? b,Gọi E là giao điểm của BD và AH,F là giao điểm của BD và CK.Chứng minh rằng HDE=KBF và AF=CE c,AF cắt BC tại I và CE cắt AD tại J.Chứng minh IJ,HK,BD cùng đi qua 1 điểm
Cho hình thang vuông ABCD ( A = D = 90 ° , CD = 2AB ) . Gọi H là hình chiếu của D lên AC . Gọi M , N lần lượt là trung điểm của HC và HD . a / Chứng minh MN = AB . b / Chứng minh tứ giác ABMN là hình bình hành . c / Chứng minh N là trực tâm tam giác AMD và DMB = 90°