Bài 7: Tứ giác nội tiếp

SK

Cho hình bình hành ABCD. Đường tròn đi qua ba đỉnh A, B, C cắt đường thẳng CD tại P khác C. Chứng minh AP = AD.

QD
11 tháng 4 2017 lúc 16:28

Do tứ giác ABCP nội tiếp nên ta có:

+ = 180o (1)

Ta lại có: + = 180o (2)

(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)

Từ (1) và (2) suy ra: =

Vậy ABCP là hình thang cân, suy ra AP = BC (3)

nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)

Từ (3) và (4) suy ra AP = AD.



Bình luận (0)
DN
11 tháng 4 2017 lúc 17:52

Do tứ giác ABCP nội tiếp nên ta có:

+ = 180o (1)

Ta lại có: + = 180o (2)

(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)

Từ (1) và (2) suy ra: =

Vậy ABCP là hình thang cân, suy ra AP = BC (3)

nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)

Từ (3) và (4) suy ra AP = AD.


Bình luận (0)
H24
17 tháng 3 2020 lúc 20:39

Do tứ giác ABCP nội tiếp nên ta có:

+ = 180o (1)

Ta lại có: + = 180o (2)

(hai góc trong cùng phía tạo bởi cát tuyến CB và AB // CD)

Từ (1) và (2) suy ra: =

Vậy ABCP là hình thang cân, suy ra AP = BC (3)

nhưng BC = AD (hai cạnh đối đỉnh của hình bình hành) (4)

Từ (3) và (4) suy ra AP = AD.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
SK
Xem chi tiết
KL
Xem chi tiết
HT
Xem chi tiết
TD
Xem chi tiết
MT
Xem chi tiết
PL
Xem chi tiết
TH
Xem chi tiết
NQ
Xem chi tiết
TP
Xem chi tiết