Bài 7: Hình bình hành

PM

Cho hình bình hành ABCD có M, N là trung điểm AB, CD . Gọi P, Q nằm trên cạnh AD, BC
tương ứng sao cho AP=CQ. a. Chứng minh rằng ∆𝑀𝐴𝑃 = ∆𝑁𝐶𝑄. b. Chứng minh rằng ∆𝑀𝐵𝑄 = ∆𝑁𝐷𝑃. c. Chứng minh rằng tứ giác MPNQ là hình bình hành. d. Chứng minh rằng ba đường thẳng MN, PQ, BD đồng quy tại một điể
 

NT
31 tháng 8 2021 lúc 23:22

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(CN=ND=\dfrac{CD}{2}\)

mà AB=CD

nên AM=MB=CN=ND

Xét ΔMAP và ΔNCQ có 

MA=CN

\(\widehat{A}=\widehat{C}\)

AP=CQ

Do đó: ΔMAP=ΔNCQ

b: Ta có: BQ+CQ=BC

AP+DP=AD

mà BC=AD

và CQ=AP

nên BQ=DP

Xét ΔMBQ và ΔNDP có

MB=ND

\(\widehat{B}=\widehat{D}\)

BQ=DP

Do đó: ΔMBQ=ΔNDP

Bình luận (0)

Các câu hỏi tương tự
SX
Xem chi tiết
NA
Xem chi tiết
NM
Xem chi tiết
PM
Xem chi tiết
MN
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết