Ôn tập: Tam giác đồng dạng

BT

Cho hcn ABCD có AB=8cm, BC=6cm. Vẽ đ/cao AH của △ADB.

a, CM: ΔAHB∼ΔBCD.

b, CM: AD2=DH.DB

c, Tính DH, AH.

d, CM: \(\frac{1}{AH^2}\)=\(\frac{1}{AB^2}\)+\(\frac{1}{AD^2}\)

NT
23 tháng 5 2020 lúc 19:37

a) Xét ΔAHB và ΔBCD có

\(\widehat{AHB}=\widehat{BCD}\left(=90^0\right)\)

\(\widehat{ABH}=\widehat{BDC}\)(so le trong, AB//DC)

Do đó: ΔAHB\(\sim\)ΔBCD(g-g)

b) Xét ΔAHD và ΔBAD có

\(\widehat{AHD}=\widehat{BAD}\left(=90^0\right)\)

\(\widehat{ADB}\) chung

Do đó: ΔAHD\(\sim\)ΔBAD(g-g)

\(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}=k\)(tỉ số đồng dạng)

hay \(AD^2=HD\cdot BD\)

\(AD^2=DH\cdot DB\)(đpcm)

c) Ta có: BC=AD(hai cạnh đối trong hình chữ nhật ABCD)

mà BC=6cm

nên AD=6cm

Áp dụng định lí pytago vào ΔADB vuông tại A, ta được:

\(BD^2=AD^2+AB^2\)

hay \(BD^2=6^2+8^2=100\)

\(BD=\sqrt{100}=10cm\)

Ta có: \(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}\)(cmt)

nên \(\frac{6}{10}=\frac{HD}{6}\)

\(HD=\frac{6\cdot6}{10}=\frac{36}{10}=3,6cm\)

Ta có: \(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}\)(cmt)

nên \(\frac{3,6}{6}=\frac{AH}{8}\)

\(AH=\frac{3,6\cdot8}{6}=\frac{28,8}{6}=4,8cm\)

Vậy: HD=3,6cm và AH=4,8cm

d) Ta có: \(\frac{1}{AH^2}=\frac{1}{\left(4,8\right)^2}=\frac{1}{23,04}=\frac{25}{576}\)(1)

Ta có: \(\frac{1}{AB^2}+\frac{1}{AD^2}=\frac{1}{8^2}+\frac{1}{6^2}=\frac{1}{64}+\frac{1}{36}\)

\(=\frac{9}{576}+\frac{16}{576}=\frac{25}{576}\)(2)

Từ (1) và (2) suy ra \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\)(đpcm)

Bình luận (0)
H24
23 tháng 5 2020 lúc 19:28

a)Xét tam giác HBA và tam giác ABD có:

góc AHB=góc DAB(=90độ)

góc B chung

=> tam giác HBA đồng dạng tam giác ABD (g-g)

b) xét tam giác HDA và tam giác ADB có

góc AHD =góc DAB(=90độ)

góc D chung

=> tam giác HDA đồng dạng tam giác ADB (g-g)

=>AD/BD=HD/BD=>AD^2=DH.BD

c)vì ABCD là hcn=> BC=AD=6cm

tam giác ABD vuông tại A=> BD^2=AD^2+AB^2(ĐL Pytago)

=>BD^2=6^2+8^2

=>BD=10(cm)

Có AD^2=DH.BD=>6^2=DH.10=>DH=3.6(cm)

tam giác ADH vuông tại H

=>Ad^2=AH^2+HD^2(ĐL Pytago)

=>6^2=AH^2+3,6^2

=>AH=4.8(cm)

còn câu d) mik k bt

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
NT
Xem chi tiết
HB
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết