Cho hình bình hành ABCD. Vẽ tia Ax cắt đường chéo BD ở I, cắt tia BC ở J và cắt tia DC ở K.
a) Theo định lý Talet thì tỉ số ID/IB bằng với những tỉ số nào? Chứng minh IA2 = IJ.IK
b) Hai tỉ số AI/AJ và AI/AK bằng tỉ số nào trên đường chéo BD? Chứng minh 1/AJ + 1/AK = 1/AI
cho hình bình hành abcd một đường thẳng đi qua a lần lượt cắt bd ở i bc tại j và cd tại k a) so sánh ib/id và dc/dk b)ia^2=ij.ik c) cmr dc/dk=bi/bc
Tứ giác ABCD .Đg thẳng đi Avà //vs BC ,cắt BD ở E .đg thẳng đi quaB và //vs AD ở G b,EG//DC b, giả sử AB//CD .CM :AB2=EG. DC
1. Cho tứ giác ABCD. E ∈ AB. Kẻ qua E đường thẳng song song AC cắt BC ở F. Qua F vẽ đường thẳng song song BD cắt CD ở G. Qua G vẽ đường thẳng song song vs AC cắt AD ở H. CM: EFGH là hình bình hành.
2. Cho ΔABC có AB=4cm, BC=8cm, AC=6cm. Các p/g trong và ngoài tại A cắt BC ở D, E. Tính BD, DC, BE.
3. Cho hthang ABCD( AB//CD). AB=10cm, CD=30cm, E ∈ AD sao cho AE=3ED. Qua E kẻ đường thẳng song song với CD cắt BC ở F. Tính EF.
Cho hình thang ABCD ( AB // CD ) một đường thẳng // với hai đáy cắt cạnh AD ở I, cắt đường chéo BD ở K, cắt đường chéo AC ở L và cắt cạnh BC ở M
a) CM: IC ^ 2 = IA.IB
b) tính \(\dfrac{ID}{IC}?\)
Cho hình thang ABCD (AB//CD), một đường thẳng // với 2 đáy cắt cạnh bên AD ở I, cắt đường chéo BD ở K, cắt đường chéo AC ở L và cắt cạnh bên BC ở M.
a, CM: IK=LM
b, Đường thẳng đi qua giao điểm O của 2 đường chéo và // với 2 đáy cắt 2 cạnh bên AD, BC lần lượt tại E, F.
CM : OE=OF
Cho hình bình hành ABCD. Một đường thẳng qua A lần lượt cắt BD ở I, BC ở J và CD ở K.a. So sánh ID/IBvà IK/IA b. Chứng minh: IA^2= IJ . IK c. Chứng minh:DC/DK= BJ/BC
Cho tứ giác ABCD. Đường thẳng qua A và song song với BC cắt BD ở E. Đường thẳng qua B và song song với AD cắt AC ở G . CM: EG//CD
Cho hình thang ABCD ( AB // CD ) một đường thẳng // với hai đáy cắt cạnh AD ở I, cắt đường chéo BD ở K, cắt đường chéo AC ở L và cắt cạnh BC ở M
CM IK = IL