Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

TH

Cho hàm số y=\(\dfrac{2x+4}{1-x}\) có đồ thị (C).G đường đi qua gọi d là đường đi qua A(1;1)  và có hệ số góc k. Tìm ksao cho d caứt (C) tại 2 điểm M,N sao cho MN= \(3\sqrt{10}\)

NL
23 tháng 3 2021 lúc 23:26

Phương trình d: \(y=k\left(x-1\right)+1=kx-k+1\)

Phương trình hoành độ giao điểm (C) và (d):

\(\dfrac{2x+4}{1-x}=kx-k+1\)

\(\Leftrightarrow kx^2-\left(2k-3\right)x+k+3=0\)

\(\Delta=\left(2k-3\right)^2-4k\left(k+3\right)=-24k+9\ge0\Rightarrow k\le\dfrac{3}{8}\)

\(\left\{{}\begin{matrix}x_M+x_N=\dfrac{2k-3}{k}\\x_M.x_N=\dfrac{k+3}{k}\end{matrix}\right.\)

\(MN^2=\left(x_M-x_N\right)^2+\left(y_M-y_M\right)^2=90\)

\(\Leftrightarrow\left(k^2+1\right)\left(x_M-x_N\right)^2=90\)

\(\Leftrightarrow\left(k^2+1\right)\left[\left(x_M+x_N\right)^2-4x_Mx_N\right]=90\)

\(\Leftrightarrow\left(k^2+1\right)\left[\dfrac{\left(2k-3\right)^2}{k^2}-\dfrac{4\left(k+3\right)}{k}\right]=90\)

\(\Leftrightarrow\left(k^2+1\right)\left(3-8k\right)=30k^2\)

\(\Leftrightarrow8k^3+27k^2+8k-3=0\)

\(\Leftrightarrow\left(k+3\right)\left(8k^2+3k-1\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
TH
24 tháng 4 2021 lúc 21:15

Cho cos x + sin x =\(\dfrac{3}{4}\) . Tính giá trị biểu thức A = \(\left|sinx-cosx\right|\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
MM
Xem chi tiết
TT
Xem chi tiết
MM
Xem chi tiết
JE
Xem chi tiết
TN
Xem chi tiết
HN
Xem chi tiết
QB
Xem chi tiết
TN
Xem chi tiết