Ôn tập chương 2: Hàm số bậc nhất

TC

Cho hàm số bậc nhất y=-2x -5 (d) và y= -x (d') A. Vẽ đồ thị d và d' của 2 hàm số đã cho trêb cùng 1 hệ tọa đọi Oxy B. Tìm tọa độ điểm M là giao điểm của 2 đồ thị vừa vẽ ( bằng phép tính) C. Tính góc alpha tạo bởi đường thẳng d với trục hoành Ox ( làm tròn kết quả đến độ) D. Gọi giao điểm của d với trục Oy là A, tính chu vi và diện tích tam giác MOA ( đơn vị đo trên các trục tọa độ là cm)

NT
19 tháng 9 2023 lúc 13:53

a) \(\left\{{}\begin{matrix}\left(d\right):y=-2x-5\\\left(d'\right):y=-x\end{matrix}\right.\)

loading...

b) \(\left(d\right)\cap\left(d'\right)=M\left(x;y\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x-5\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x=-2x-5\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)

\(\Rightarrow M\left(-5;5\right)\)

c) Gọi \(\widehat{M}=sđ\left(d;d'\right)\)

\(\left(d\right):y=-2x-5\Rightarrow k_1-2\)

\(\left(d'\right):y=-x\Rightarrow k_1-1\)

\(tan\widehat{M}=\left|\dfrac{k_1-k_2}{1+k_1.k_2}\right|=\left|\dfrac{-2+1}{1+\left(-2\right).\left(-1\right)}\right|=\dfrac{1}{3}\)

\(\Rightarrow\widehat{M}\sim18^o\)

Bình luận (0)
NT
19 tháng 9 2023 lúc 14:24

d) \(\left(d\right)\cap Oy=A\left(0;y\right)\)

\(\Leftrightarrow y=-2.0-5=-5\)

\(\Rightarrow A\left(0;-5\right)\)

\(OA=\sqrt[]{0^2+\left(-5\right)^2}=5\left(cm\right)\)

\(OM=\sqrt[]{5^2+5^2}=5\sqrt[]{2}\left(cm\right)\)

\(MA=\sqrt[]{5^2+10^2}=5\sqrt[]{5}\left(cm\right)\)

Chu vi \(\Delta MOA:\)

\(C=OA+OB+MA=5+5\sqrt[]{2}+5\sqrt[]{5}=5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)\left(cm\right)\)

\(\Rightarrow p=\dfrac{C}{2}=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}p-OA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5=\dfrac{5\left(\sqrt[]{2}+\sqrt[]{5}-1\right)}{2}\\p-OB=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{2}=\dfrac{5\left(-\sqrt[]{2}+\sqrt[]{5}+1\right)}{2}\\p-MA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{5}=\dfrac{5\left(\sqrt[]{2}-\sqrt[]{5}+1\right)}{2}\end{matrix}\right.\)

\(p\left(p-MA\right)=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}.\dfrac{5\left(1+\sqrt[]{2}-\sqrt[]{5}\right)}{2}\)

\(\Leftrightarrow p\left(p-MA\right)=\dfrac{25\left[\left(1+\sqrt[]{2}\right)^2-5\right]}{4}=\dfrac{25.2\left(\sqrt[]{2}-1\right)}{4}=\dfrac{25\left(\sqrt[]{2}-1\right)}{2}\)

\(\left(p-OA\right)\left(p-OB\right)=\dfrac{25\left[5-\left(\sqrt[]{2}-1\right)^2\right]}{4}\)

\(\Leftrightarrow\left(p-OA\right)\left(p-OB\right)=\dfrac{25.2\left(\sqrt[]{2}+1\right)}{4}=\dfrac{25\left(\sqrt[]{2}+1\right)}{4}\)

Diện tích \(\Delta MOA:\)

\(S=\sqrt[]{p\left(p-OA\right)\left(p-OB\right)\left(p-MA\right)}\)

\(\Leftrightarrow S=\sqrt[]{\dfrac{25\left(\sqrt[]{2}-1\right)}{2}.\dfrac{25\left(\sqrt[]{2}+1\right)}{2}}\)

\(\Leftrightarrow S=\sqrt[]{\dfrac{25^2}{2^2}}=\dfrac{25}{2}=12,5\left(cm^2\right)\)

Bình luận (0)
KL
19 tháng 9 2023 lúc 14:26
x0-5/21
y=-2x-5-50 
y=-x0 -1

*) Đồ thị:

 

b) Phương trình hoành độ giao điểm của (d) và (d'):

\(-2x-5=-x\)

\(\Leftrightarrow-2x+x=5\)

\(\Leftrightarrow x=-5\) \(\Rightarrow y=-\left(-5\right)=5\)

Vậy tọa độ giao điểm của (d) và (d') là \(M\left(-5;5\right)\)

c) Ta có:

\(tanB=\dfrac{OA}{OB}=\dfrac{-5}{-\dfrac{5}{2}}=2\)

\(\Rightarrow\widehat{B}\simeq63^0\)

Mà góc tạo bởi d với trục hoành là \(\widehat{OBM}\)

\(\Rightarrow\widehat{OBM}\simeq180^0-63^0=117^0\)

d) Ta có:

\(OM^2=5^2+5^2=50\) 

\(\Rightarrow OM=5\sqrt{2}\left(cm\right)\)

\(AM^2=5^2+10^2=125\)

\(\Rightarrow AM=5\sqrt{5}\left(cm\right)\)

Chu vi \(\Delta MOA\):

\(5\sqrt{2}+5\sqrt{5}+5=5\left(\sqrt{2}+\sqrt{5}+1\right)\left(cm\right)\)

Diện tích \(\Delta MOA\)

\(S_{MOA}=\dfrac{MH.OA}{2}=\dfrac{5.5}{2}=25\left(cm^2\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
SK
Xem chi tiết
NH
Xem chi tiết
TC
Xem chi tiết
TC
Xem chi tiết
CX
Xem chi tiết