Bài 4: Góc tạo bởi tiếp tuyến và dây cung

SK

Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến kẻ từ A đối với đường tròn (O') cắt (O) tại C và đối với đường tròn (O) cắt (O') tại D. Chứng minh rằng \(\widehat{CBA}=\widehat{DBA}.\)

ND
11 tháng 4 2017 lúc 12:24

Ta có: \widehat {CAB} = {1 \over 2}\widehat {AmB} (1)

( vì là góc tạo bởi một tiếp tuyến và một dây cung đi qua tiếp điểm A của (O')).

\widehat {ADB} = {1 \over 2}\widehat {AmB} (2)

góc nội tiếp của đường tròn (O') chắn cung \dpi{100} \widehat {AmB}

Từ (1), (2) suy ra

\dpi{100} \widehat {CAB} = \widehat {ADB} (3)

Chứng minh tương tự với đường tròn (O), ta có:

\dpi{100} \widehat {ACB} = \widehat {DAB} (4)

Hai tam giác ABD và ABC thỏa (3), (4) suy ra cặp góc thứ 3 của chúng bằng nhau, vậy =

Bình luận (0)

Các câu hỏi tương tự
VL
Xem chi tiết
VL
Xem chi tiết
NM
Xem chi tiết
NN
Xem chi tiết
SK
Xem chi tiết
NN
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
2N
Xem chi tiết