Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Trên tia đối của tia AB lấy điểm M. Qua M kẻ đường thẳng (d) cắt (O) tại C và D (C nằm giữa M và D), đường thẳng (d') cắt (O') tại E và F (E nằm giữa F và M). Chứng minh CDFE là tứ giác nội tiếp
cho đường tròn(o;r), từ điểm a ở bên ngoài đường tròn kẻ 2 tiếp tuyến ab, ac với đường tròn(o) (b,c là tiếp điểm) từ b kẻ đường thẳng song song ac cắt đường tròn(o) tại d(d khác b), đường thẳng ad cắt đường tròn (o) tại e( e khác d) a) chứng minh tứ giác aboc nội tiếp b) chứng minh ab²= ae×ad c) giả sử oa=2r. Tính góc bec và diện tích obac d) so sánh góc cea và góc bec
Từ điểm M nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến ME, MF và cát tuyến MAB với (O) ( cát tuyến MAB không đi qua O ) .Qua A kẻ đường thẳng vuông góc với OE cắt EF và EB lần lượt tại C và D .Gọi N là trung điểm của AB . Chứng minh a) OFMN là tứ giác nội tiếp b) ACNF là tứ giác nội tiếp c) AC = CD
cho nửa đường tròn (o) đường kính AB, điểm C thuộc nửa đường tròn ( AC > BC). Gọi D là một điểm trên bán kính OA, qua D kẻ đường vuông góc với AB cắt AC và BC lần lượt tại E và F. Tiếp tuyến của nửa đường tròn tại C cắt È ở I. Chứng minh
a) Tứ giác BDEC và ADCF là các tứ giác nội tiếp được đường tròn.
b) I là trung điểm của EF
c) AE.EC = DE.EF
Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thẳng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng:
a) Tứ giác MAOB là tứ giác nội tiếp và
b) Bốn điểm O, H, C, D thuộc một đường tròn.
c) CI là tia phân giác của .
cho ( o , R ) và đường thẳng d không đi qua O cắt đường tròn ( o) tại 2 điểm A , B . Từ điểm C ở ngoài đường tròn (O) ,C thuộc d sao cho CB < CA kẻ 2 tiếp tuyến CM,CN với đưởng tròn .gọi H là trung điểm của dây AB OH cắt CN tại K
1.Chứng minh:KN.KC=KH.KO
2. chứng minh:5 điểm M,H,O,N,C cùng thuộc một đường tròn
3. Đoạn thẳng CO cắt MN TẠI i.Chứng minh CIB^ = OAB^
4 , Một đường thẳng qua O và // với MN cắt CM , CN lần lượt tại E và F . Xác định vị trí của điểm C trên đường thẳng D để dienj tích tam giác CEF nhỏ nhất
Cho đường tròn (O), dây AB. Các tiếp tuyến của đường tròn tại A và B cắt nha tại C. Trên dây AB lấy điểm E(EA>EB). Đường vuông góc với OE tại E cắt CA và CB theo thứ tự ở I và K. Chứng minh rằng
1) OAEI, OEBK là các tứ giác nội tiếp 3) AI = BK
2) OIK là tam giác cân 4) OICK là tứ giác nội tiếp
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, có hai đường cao BB' và CC' cắt nhau tại H a)Chứng minh tứ giác BCB'C' nội tiếp? b)Gọi H' là đối xứng của H qua BC. Chứng minh H thuộc đường tròn tâm O? c)Tia AO cắt đường tròn tâm O tại D và cắt B'C' tại I. Chứng minh AD vông góc với C'B'
cho một đường tròn (O;R) từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB và AC với đường tròn.
a, chứng minh ABOC nội tiếp.
b,D là trung điểm AC và BD cắt đường tròn tại E, AE cắt đường tròn tại F. Chứng minh AB2= AE•AF
c, i là giao điểm ao với (o) chứng minh BC=CF