Bài 8: Tính chất của dãy tỉ số bằng nhau

NL

Cho:

\(\frac{4x-3y}{5}=\frac{5y-4z}{3}=\frac{3z-5x}{4}\) và x-y+z=2020. Tìm x, y, z

H24
14 tháng 12 2019 lúc 21:04

Từ dãy tỉ số bằng nhau bài cho ta có

\(\frac{20x-15y}{25}=\frac{15y-12z}{9}=\frac{12z-20x}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{20x-15y}{25}=\frac{15y-12z}{9}=\frac{12z-20x}{16}=\frac{20x-15y+15y-12z+12z-20x}{25+9+16}=0\)

\(\Rightarrow4x-3y=5y-4z=3z-5x=0\)

....

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 12 2019 lúc 11:40

Từ \(\frac{4x-3y}{5}\)=\(\frac{5y-4z}{3}\)=\(\frac{3z-5x}{4}\)\(\frac{20x-15y}{25}\)=\(\frac{15y-12z}{9}\)=\(\frac{12z-20x}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{20x-5y}{25}\)=\(\frac{15y-12z}{9}\)\(\frac{12z-20x}{16}\)=\(\frac{20x-5y+15y-12z+12z-20x}{25+9+16}\)=\(\frac{0}{50}\)=0

+)4x-3y=0⇒4x=3y⇒\(\frac{x}{3}\)=\(\frac{y}{4}\)

+)5y-4z=0⇒5y=4z⇒\(\frac{y}{4}\)=\(\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)=\(\frac{x-y+z}{3-4+5}=\frac{2020}{4}=505\)

+)\(\frac{x}{3}=505\)⇒x=1515

+)\(\frac{y}{4}=505\)⇒y=2020

+)\(\frac{z}{5}=505\)⇒z=2525

Vậy....

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KL
Xem chi tiết
TH
Xem chi tiết
LT
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết