Bài 7: Tứ giác nội tiếp

LA

Cho đường tròn tâm O từ điểm m cố định nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến MA MB với A,B là tiếp điểm .Một điểm N di động trên cung nhỏ AB nối M với N, đường thẳng MN cắt đường tròn tâm O tại giao điểm thứ hai là P. Gọi K là trung điểm của NP
a) Chứng minh MAOB và MBOK là tứ giác nội tiếp
b)Gọi H là giao điểm AB và OM . Cmr MA^2=MH.MO=MN.MP
c)Đường thẳng AB,OK cắt nhau tại E.Cmr EN,EP là tiếp tuyến (O)


Các câu hỏi tương tự
LV
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
HT
Xem chi tiết
NM
Xem chi tiết
DN
Xem chi tiết
MN
Xem chi tiết