Bài 1:Cho hv ABCD gọi O là tâm đường tròn đi qua 4 điểnm ABCD
a) Tính số đo góc ỏ tâm AOB và góc BOC
b) Tính số đo cung nhỏ AB, CD.
Bài 2: Cho điểm S nằm ngoài (O; R) kẻ tiếp tuyến SA (A là tiếp điểm ). SO cắt đường tròn tại B biết ÁD =35 độ . Tính số đo cung AB.
Bài 3: Hai tiếp tuyến của (O) tại A và B cắt nhau tại S biết ÁB =60 độ
a) Tính số đo cung lớn AB
b) Lấy điểm C bất kì thuộc cungnhor AB, vẽ tiếp tuyến của đường tròn tại C cắt SA tại D, cắt SB tại E. OD; OE cắt cung nhỏ AB tại I, K. Chứng tỏ số đo cung IK ko phụ thuộc vào vị trí điểm C
Cho ΔAOB có \(\widehat{AOB}=110^o\) . Vẽ đường tròn (O, OA). Gọi C là 1 điểm trên đường tròn (O) biết sđ \(\stackrel\frown{AC}=40^0\) . Tính số đo cung nhỏ \(\stackrel\frown{BC}\) và cung lớn \(\stackrel\frown{BC}\)
Cho hình thoi ABCD. Vẽ đường tròn tâm A, bán kính AD. Vẽ đường tròn tâm C, bán kính CB. Lấy điểm E bất kì trên đường tròn tâm A (không trùng với B bà D), điểm F trên đường tròn tâm C sao cho BF song song với DE
So sánh hai cung nhỏ DE và BF ?
cho đường tròn tâm O đường kính AB. Từ A và B vẽ hai dây cung AC và BD song song với nhau . So sánh hai cung nhỏ AC và BD
cho đường tròn tâm O đường kính Ab. Từ A và B vẽ hai dây cung AC và BD song song với nhau .So sánh hai cung nhỏ AC và BD
Cho nửa đường tròn tâm O, đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A,B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở C và D. Biết CD=a và BD= 3AC
a) CMR: OC và OD vuông góc
b) Tính tỉ số AC^2+BD^2/ CD^2
c) Tính theo a diện tích tứ giác ACDB
Cho đường tròn (O; R). Qua điểm A thuộc đường tròn, kẻ tiếp tuyến Ax, trên đó lấy điểm B sao cho \(OB=\sqrt{2}R\), OB cắt đường tròn (O) ở C.
a) Tính số đo góc ở tâm tạo bởi hai bán kính OA, OC;
b) Tính số đo các cung AC của đường tròn (O).