Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

NA

Cho đường tròn (Cm): xx2 +yy2 -2mx +2y +m+7=0 có tâm là I. Xác định m để đường thẳng d:x+y+1=0 cắt (Cm) tại hai điểm phân biệt A và B sao cho IAB là ∆ đều.

NL
3 tháng 7 2020 lúc 12:53

Tâm \(I\left(m;-1\right)\) bán kính \(R=\sqrt{m^2-m-6}\) với \(\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)

\(\Delta IAB\) đều \(\Leftrightarrow d\left(I;d\right)=\frac{R\sqrt{3}}{2}\)

\(\Leftrightarrow\frac{\left|m-1+1\right|}{\sqrt{1^2+1^2}}=\frac{\sqrt{3m^2-3m-18}}{2}\)

\(\Leftrightarrow\sqrt{2}\left|m\right|=\sqrt{3m^2-3m-18}\)

\(\Leftrightarrow2m^2=3m^2-3m-18\)

\(\Rightarrow m^2-3m-18=0\Rightarrow\left[{}\begin{matrix}m=6\\m=-3\end{matrix}\right.\)

Bình luận (1)

Các câu hỏi tương tự
NA
Xem chi tiết
NH
Xem chi tiết
NP
Xem chi tiết
MR
Xem chi tiết
NP
Xem chi tiết
NN
Xem chi tiết
ML
Xem chi tiết
ML
Xem chi tiết
TH
Xem chi tiết