Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

DL

Cho đường thẳng (d): x+y-1=0 và đường tròn (C): x^2+y^2-4x+2y-4=0. Viết phương trình đường thẳng vuông góc với (d) và cắt (C) tại 2 điểm A, B sao cho AB=2.

NL
2 tháng 8 2020 lúc 9:47

(d) nhận \(\left(1;1\right)\) là 1 vtpt nên d' nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình d' có dạng: \(x-y+c=0\)

Đường tròn tâm \(I\left(2;-1\right)\) bán kính \(R=3\)

Áp dụng Pitago: \(d\left(I;d'\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=2\sqrt{2}\)

Theo công thức khoảng cách:

\(d\left(I;d'\right)=\frac{\left|2+1+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=2\sqrt{2}\)

\(\Leftrightarrow\left|c+3\right|=4\Rightarrow\left[{}\begin{matrix}c=1\\c=-7\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y-1=0\\x-y-7=0\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
NA
Xem chi tiết
DL
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết
LH
Xem chi tiết
ML
Xem chi tiết