Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

HT

Cho (C): x2+y2+4x-4y-1=0

Viết phương trình đường thẳng \(\Delta\) đi qua M(1;-3) và cắt đường tròn tại 2 điểm phân biệt A B sao cho AB nhỏ nhất

NL
14 tháng 6 2020 lúc 18:06

Đường tròn (C) tâm \(I\left(-2;2\right)\) bán kính \(R=3\)

\(\overrightarrow{IM}=\left(3;-5\right)\Rightarrow IM=\sqrt{34}>R\)

\(\Rightarrow\) M nằm ngoài đường tròn

\(\Rightarrow\) Không tồn tại đường thẳng thỏa mãn yêu cầu (bạn xem lại đề, chỉ tìm được đường thẳng d khi điểm M nằm phía trong đường tròn)

Bình luận (0)
NL
14 tháng 6 2020 lúc 19:49

Đường tròn (C) tâm \(I\left(2;-2\right)\) bán kính \(R=3\)

\(\overrightarrow{MI}=\left(1;1\right)\Rightarrow IM=\sqrt{2}< R\Rightarrow\) M nằm phía trong đường tròn

Gọi H là hình chiếu vuông góc của I lên d \(\Rightarrow\) H là trung điểm AB

\(AB=2AH=2\sqrt{R^2-IH^2}=2\sqrt{9-IH^2}\)

\(\Rightarrow AB_{min}\) khi \(IH_{max}\)

Trong tam giác vuông IMH, ta luôn có: \(IH\le IM\Rightarrow IH_{max}=IM\) khi H trùng M hay d vuông góc IM

\(\Rightarrow\) Phương trình d (vuông góc IM và đi qua M)

\(1\left(x-1\right)+1\left(y+3\right)=0\Leftrightarrow x+y+2=0\)

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
DL
Xem chi tiết
MQ
Xem chi tiết
NH
Xem chi tiết
DD
Xem chi tiết
ML
Xem chi tiết
DV
Xem chi tiết
HB
Xem chi tiết
NP
Xem chi tiết