từ điểm m nằm bên ngoài đường tròn (o,r) vẽ 2 tiếp tuyến ma mb ( A và b là các tiếp điểm gọi h là giao điểm của mo và ab kẻ đường kính bc của ( O) GỌi i là trung điểm ac chứng minh oiah là hình chữ nhật
Cho hai đường tròn (O;R) và (O';r) tiếp xúc trong tại I (R>r).Tiếp tuyến tại K của (O';r) cắt (O;R) tại P,Q.Tia IK cắt (O;R)tại F.Chứng minh cung FP = cung FG
Bài 1:Cho hv ABCD gọi O là tâm đường tròn đi qua 4 điểnm ABCD
a) Tính số đo góc ỏ tâm AOB và góc BOC
b) Tính số đo cung nhỏ AB, CD.
Bài 2: Cho điểm S nằm ngoài (O; R) kẻ tiếp tuyến SA (A là tiếp điểm ). SO cắt đường tròn tại B biết ÁD =35 độ . Tính số đo cung AB.
Bài 3: Hai tiếp tuyến của (O) tại A và B cắt nhau tại S biết ÁB =60 độ
a) Tính số đo cung lớn AB
b) Lấy điểm C bất kì thuộc cungnhor AB, vẽ tiếp tuyến của đường tròn tại C cắt SA tại D, cắt SB tại E. OD; OE cắt cung nhỏ AB tại I, K. Chứng tỏ số đo cung IK ko phụ thuộc vào vị trí điểm C
Cho đường tròn (O) đường kính AB. Vẽ 2 dây AM và BN song song sao cho sđ cung BM<90 độ. Vẽ dây MD song song với AB. Dây DN cắt AB tại F. Từ R vẽ 1 đường thẳng song song với AM cắt DM tại C. Chứng minh:
a, AB vuông góc DN
b, BC là tiếp tuyến của (O)
Cho đường tròn (O; R). Qua điểm A thuộc đường tròn, kẻ tiếp tuyến Ax, trên đó lấy điểm B sao cho \(OB=\sqrt{2}R\), OB cắt đường tròn (O) ở C.
a) Tính số đo góc ở tâm tạo bởi hai bán kính OA, OC;
b) Tính số đo các cung AC của đường tròn (O).
Cho (O) và điểm A nằm ngoài (O). Kẻ tiếp tuyến AC và AB tới đường tròn, AO cắt (O) tại I. Từ B vẽ đường song song với AO, đường này cắt (O) tại M. Tính số đo cung CM
cho (o;r) đường kính AB . lấy C trên tuyến tại A của O sao cho AC bằng 2R. gọi D là giao điểm BC và O
a) c/m tam giác ABC cân
b) kẻ dây AF vuông OC tại H . c/m CE tiếp tuyến của (O;R)
cho đường tròn (O) , dây AB bất kì. Trên dây AB lấy P, Q sao cho AP = PQ = QB. OP cắt (O) tại K, OQ cắt (O) tại I. Cmr: \(\stackrel\frown{AK}< \stackrel\frown{IK}\)
Cho tam giác ABC có \(AB > AC. \) Trên cạnh AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK xuống BC (\(H\in BC,K\in BD\))
a) Chứng minh rằng OH <OK
b) So sánh hai cung nhỏ BD và BC