Bài 6: Tam giác cân

NN

Cho \(\Delta\)ABC có AB=AC = 5cm , BC = 8cm . Kẻ AH \(\perp\) BC ( H \(\in\)BC ) a. Chứng minh : HB = HC và ^BAH = ^CAH b. Tính độ dài AH c. Kẻ HD \(\perp\) AB ( D \(\in\) AB ) . HE \(\perp\) AC ( E \(\in\) AC ) Chứng minh : \(\Delta\)HDE cân

NV
26 tháng 2 2018 lúc 17:24

A B C H D E

a) Xét \(\Delta ABC\) có :

AB = AC (gt)

=> \(\Delta ABC\) cân tại A

\(\Delta ABH,\Delta ACH\) có :

\(\widehat{ABH}=\widehat{ACH}\) (\(\Delta ABC\) cân tại A)

\(AB=AC\left(gt\right)\)

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)

=> \(\left\{{}\begin{matrix}HB=HC\left(\text{2 cạnh tương ứng}\right)\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)

b) Ta có : \(H\in BC\left(gt\right)\Rightarrow HB=HB=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :

\(AH^2=AB^2-BH^2\) (Định lí PITAGO)

=> \(AH^2=5^2-4^2=9\)

=> \(AH=\sqrt{9}=3\left(cm\right)\)

c) Xét \(\Delta DBH,\Delta ECH\) có :

\(\widehat{DBH}=\widehat{ECH}\) (\(\Delta ABC\) cân tại A)

\(BH=CH\)(cm câu a)

\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)

=> ​\(\Delta DBH=\Delta ECH\) (cạnh huyền -góc nhọn)

=> \(HD=HC\) (2 cạnh tương ứng)

=> \(\Delta HDE\) cân tại H.

Bình luận (0)

Các câu hỏi tương tự
DM
Xem chi tiết
NN
Xem chi tiết
LK
Xem chi tiết
H24
Xem chi tiết
KP
Xem chi tiết
MA
Xem chi tiết
TN
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết