Bài 4. ÔN TẬP CHƯƠNG II

KL

Cho \(\Delta\)ABC có A(3;1) hai đường trung tuyến kẻ từ B vad C là d1:2x-y-1=0, d2:x-1=0, Viết phương trình các cạnh của \(\Delta\)

NL
22 tháng 3 2019 lúc 21:28

Gọi M là trung điểm AB, do \(M\in d_2\Rightarrow M\left(1;a\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_A=-1\\y_B=2y_M-y_A=2a-1\end{matrix}\right.\)

Do \(B\in d_1\Rightarrow2\left(-1\right)-\left(2a-1\right)-1=0\Rightarrow a=-1\) \(\Rightarrow B\left(-1;-3\right)\)

Gọi N là trung điểm AC, do \(N\in d_1\Rightarrow N\left(b;2b-1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_A=2b-3\\y_C=2y_N-y_A=4b-3\end{matrix}\right.\)

Do \(C\in d_2\Rightarrow2b-3-1=0\Rightarrow b=2\Rightarrow C\left(1;5\right)\)

\(\overrightarrow{BA}=\left(4;4\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\overrightarrow{n_{AB}}=\left(1;-1\right)\)

\(\Rightarrow\) pt AB: \(1\left(x-3\right)-1\left(y-1\right)=0\Leftrightarrow x-y-2=0\)

\(\overrightarrow{AC}=\left(-2;4\right)\Rightarrow\) đường thẳng AC có 1 vtpt \(\overrightarrow{n_{AC}}=\left(2;1\right)\)

\(\Rightarrow\) pt AC: \(2\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-6=0\)

\(\overrightarrow{BC}=\left(2;8\right)\Rightarrow\overrightarrow{n_{BC}}=\left(4;-1\right)\)

\(\Rightarrow\) pt BC: \(4\left(x+1\right)-1\left(y+3\right)=0\Leftrightarrow4x-y+1=0\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
KJ
Xem chi tiết
HN
Xem chi tiết
KG
Xem chi tiết
VQ
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
LN
Xem chi tiết