NT

Cho ΔABC nội tiếp đường tròn (O). CMR :Nếu AB = AC thì AO vuông góc với BC,

KH
17 tháng 5 2021 lúc 16:10

Tự vẽ hình nhé!

\(AB=AC\Rightarrow\Delta ABC\) cân tại A

Ta có: \(\Delta OAC=\Delta OAB\left(c-c-c\right)\) \(\Rightarrow\widehat{A_1}=\widehat{A_2}\)

Xét \(\Delta ACI,\Delta ABI\) có:

\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)

\(AB=AC\left(gt\right)\)

AI cạnh chung

\(\Rightarrow\Delta ACI=\Delta ABI\left(c-g-c\right)\) \(\Rightarrow IC=IB\)

\(\Rightarrow AI\) là trung tuyến của \(\Delta ABC\)

Mặt khác: OI cũng là trung tuyến \(\Delta ABC\) ( do xét trong \(\Delta OCB\))

\(\Rightarrow A,O,I\) thẳng hàng

Mà: \(AI\perp BC\) ( vì \(\Delta ABC\) có AI trung tuyến)

\(\Rightarrow OA\perp BC\)

undefined

 

Bình luận (0)
NT
17 tháng 5 2021 lúc 18:42

Cách khác:

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC(Đpcm)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
BP
Xem chi tiết
TB
Xem chi tiết
TT
Xem chi tiết
WS
Xem chi tiết
NN
Xem chi tiết