a) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{A}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
b) Ta có: ΔABH=ΔACK(cmt)
⇒AH=AK(hai cạnh tương ứng)
Ta có: AK+KB=AB(do K∈AB)
AH+HC=AC(do H∈AC)
mà AB=AC(do ΔABC cân tại A)
và AH=AK(cmt)
nên KB=HC
Xét ΔKBI vuông tại K có
\(\widehat{KIB}+\widehat{IBK}=90^0\)(hai góc phụ nhau)(1)
Xét ΔHIC vuông tại H có
\(\widehat{HIC}+\widehat{HCI}=90^0\)(hai góc phụ nhau)(2)
Từ (1) và (2) suy ra
\(\widehat{KIB}+\widehat{IBK}=\widehat{HIC}+\widehat{HCI}\)
mà \(\widehat{KIB}=\widehat{HIC}\)(hai góc đối đỉnh)
nên \(\widehat{KBI}=\widehat{HCI}\)
Xét ΔKIB vuông tại K và ΔHIC vuông tại H có
KB=HC(cmt)
\(\widehat{KBI}=\widehat{HCI}\)(cmt)
Do đó: ΔKIB=ΔHIC(cạnh góc vuông-góc nhọn kề)
⇒IB=IC(hai cạnh tương ứng)
c) Xét ΔAIK vuông tại K và ΔAIH vuông tại H có
AI là cạnh chung
AK=AH(cmt)
Do đó: ΔAIK=ΔAIH(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{KAI}=\widehat{HAI}\)(hai góc tương ứng)
mà tia AI nằm giữa hai tia AK,AH
nên AI là tia phân giác của \(\widehat{KAH}\)
hay AI là tia phân giác của \(\widehat{BAC}\)
Ta có: AI là đường phân giác ứng với cạnh đáy BC của ΔABC cân tại A(do AI là tia phân giác của \(\widehat{BAC}\))
nên AI cũng là đường cao ứng với cạnh BC của ΔABC cân tại A(định lí tam giác cân)
⇒AI⊥BC(đpcm)