a: BC=13cm
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}=\dfrac{5}{13}\)
nên \(\widehat{C}=23^0\)
=>\(\widehat{B}=67^0\)
b: Xét ΔBAC có AE là đường phân giác
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)
hay \(\dfrac{BE}{5}=\dfrac{CE}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{5}=\dfrac{CE}{12}=\dfrac{BE+CE}{5+12}=\dfrac{13}{17}\)
Do đó: BE=65/17; CE=156/17
c: Xét tứ giác AMEN có
\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)
Do đó: AMEN là hình chữ nhật
mà AE là đường phân giác
nên AMEN là hình vuông