Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

LS

Cho biểu thức: \(Q=\frac{a+2\sqrt{a}+1}{a-1}.\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}-a+\sqrt{a}-1}\right);\)với \(a\ge0\);\(a\ne1\)

a) Rút gọn biểu thức Q.

b) Chứng minh rằng khi a>1 thì giá trị biểu thức Q nhỏ hơn 1.

AI GIẢI NHANH GIÙM Ạ !!!!!

TQ
10 tháng 5 2019 lúc 11:52

a) \(Q=\frac{a+2\sqrt{a}+1}{a-1}.\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}-a+\sqrt{a}-1}\right)=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\left[\frac{a+1}{\left(\sqrt{a}-1\right)\left(a+1\right)}-\frac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right]=\frac{\sqrt{a}+1}{\sqrt{a}-1}.\frac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+1\right)}=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2\left(a+1\right)}=\frac{\sqrt{a}+1}{a+1}\)

b) Ta có \(a>1\Leftrightarrow\sqrt{a}>1\Leftrightarrow\sqrt{a}-1>0\Leftrightarrow\sqrt{a}\left(\sqrt{a}-1\right)>0\Leftrightarrow a-\sqrt{a}>0\Leftrightarrow a+1>\sqrt{a}+1\Leftrightarrow\frac{\sqrt{a}+1}{a+1}< 1\Leftrightarrow Q< 1\)Vậy a>1 thì Q<1

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết
ML
Xem chi tiết
NN
Xem chi tiết
DG
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
VK
Xem chi tiết