Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

TT

B2;Cho biểu thứcQ=\(\frac{\left(\frac{a-b}{\sqrt{a}+\sqrt{b}}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{ab}-a}{a\sqrt{a}-b\sqrt{a}}\)

với a>0, b>0, a khacsb. Chứng minh rằng giá trị của biểu thức Q ko phụ thuộc vào a,b

NT
27 tháng 7 2019 lúc 14:33

\( Q = \dfrac{{{{\left( {\dfrac{{a - b}}{{\sqrt a + \sqrt b }}} \right)}^3} + 2a\sqrt a + b\sqrt b }}{{3{a^2} + 3b\sqrt {ab} }} + \dfrac{{\sqrt {ab} - a}}{{a\sqrt a - b\sqrt a }}\\ Q = \dfrac{{{{\left[ {\dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt a + \sqrt b }}} \right]}^3} + 2a\sqrt a + b\sqrt b }}{{3\left( {{a^2} + b\sqrt {ab} } \right)}} + \dfrac{{\sqrt a \left( {\sqrt b - \sqrt a } \right)}}{{\sqrt a \left( {a - b} \right)}}\\ Q = \dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^3} + 2a\sqrt a + b\sqrt b }}{{3\sqrt a \left( {a\sqrt a + b\sqrt b } \right)}} + \dfrac{{ - \left( {\sqrt a - \sqrt b } \right)}}{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}\\ Q = \dfrac{1}{{\sqrt a + \sqrt b }} + \dfrac{{ - 1}}{{\sqrt a + \sqrt b }} = 0 \)

Vậy Q không phụ thuộc vào a,b

Bình luận (0)

Các câu hỏi tương tự
LS
Xem chi tiết
PC
Xem chi tiết
LN
Xem chi tiết
YP
Xem chi tiết
DH
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
MH
Xem chi tiết
LP
Xem chi tiết