Bài 8: Rút gọn biểu thức chứa căn bậc hai

TV
cho biểu thức P=4√x +3/x+√x + √x/√x + 1, với x lớn hơn 0. Tìm tất cả các giá trị nguyên của x để P nhận giá trị nguyên
NT
15 tháng 1 2021 lúc 20:51

Ta có: \(P=\dfrac{4\sqrt{x}+3}{x+\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

Để P nguyên thì \(\sqrt{x}+3⋮\sqrt{x}\)

mà \(\sqrt{x}⋮\sqrt{x}\)

nên \(3⋮\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\inƯ\left(3\right)\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;-1;3;-3\right\}\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\in\left\{1;3\right\}\)

\(\Leftrightarrow x\in\left\{1;9\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{1;9\right\}\)

Vậy: Để P nguyên thì \(x\in\left\{1;9\right\}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
II
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết