a: \(B=\dfrac{x+4\sqrt{x}+4-\left(x-4\sqrt{x}+4\right)+4x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(4-x\right)}{\left(3-3\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(=\dfrac{5x+4\sqrt{x}+4-x+4\sqrt{x}-4}{1}\cdot\dfrac{-\sqrt{x}}{\left(3-3\sqrt{x}\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{4x+8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{3\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}}{3\sqrt{x}-3}\)
b: Để B>0 thì \(3\sqrt{x}-3>0\)
hay x>1
c: Để B là số nguyên thì \(4\sqrt{x}⋮3\sqrt{x}-3\)
\(\Leftrightarrow12\sqrt{x}-12+12⋮3\sqrt{x}-3\)
\(\Leftrightarrow3\sqrt{x}-3\in\left\{1;-1;2;-2;3;-3;4;6;12\right\}\)
hay \(x\in\left\{\dfrac{16}{9};\dfrac{4}{9};\dfrac{25}{9};\dfrac{1}{9};\dfrac{49}{9};9;25\right\}\)