Sửa: \(A=\dfrac{\cos70^0-\sin\alpha}{\tan60^0-\cot70^0}\)
Vì \(\sin\alpha>\sin20^0\Leftrightarrow\cos70^0-\sin\alpha< \sin20^0-\sin20^0=0\)
Mà \(\tan60^0-\cot70^0=\tan60^0-\tan20^0>0\)
Do đó \(A< 0,\forall20^0< \alpha< 90^0\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Sửa: \(A=\dfrac{\cos70^0-\sin\alpha}{\tan60^0-\cot70^0}\)
Vì \(\sin\alpha>\sin20^0\Leftrightarrow\cos70^0-\sin\alpha< \sin20^0-\sin20^0=0\)
Mà \(\tan60^0-\cot70^0=\tan60^0-\tan20^0>0\)
Do đó \(A< 0,\forall20^0< \alpha< 90^0\)
chứng tỏ giá trị của biểu thức không phụ thuộc vào giá tị của biến P=\(\left(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1}\right)\dfrac{\left(\sqrt{a}-1\right)\left(a-1\right)}{\sqrt{a}}\) với a>0 ,a khác 1
1.Giải phương trình sau \(\sqrt{x-4}+\sqrt{x+4}=2\left(\sqrt{x^2-16}+x-6\right)\)
2. cho biểu thức T=\(sin^6x+cos^6x+3sin^2x.cos^2x+tan^2x.cos^2x+cotan^2x.sin^2x\left(0< x< 90^0\right)\). Chứng minh giá trị của T không phụ thuộc vào giá trị của biến x
cho a,b,c>o và a+b+c=1
tìm giá trị nhỏ nhất của biểu thức a.b.c +\(\dfrac{1}{a.b.c}\)
với gt nào của a thì biểu thức sau có nghĩa \(\sqrt{\dfrac{1}{a^2}}\)
cho biểu thức T =\(1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\right)\)
a) Rút gọn biểu thức T
b) Chứng minh T>3 với x\(\ne\)1 và x>0
A=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
1/ Đặt điều kiện để biểu thức A có nghĩ.
2/ Rút gọn biểu thức A.
3/ Với giá trị nào của x thid A<-1
Câu 1 ) Cho \(a,b,c\in R\) . Chứng minh rằng :
M=\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3\left(a+b+c\right)^2}{4}\)
Câu 2 ) Cho \(a>0;b>0;a+b\le1\) . Tìm GTNN của biểu thức :
A = \(\dfrac{2}{a^2+b^2}+\dfrac{35}{ab}+2ab\)
Câu 3) Cho \(a>0;b>0\) . Chứng minh rằng : \(\left(4a^2+b^2\right)\left(\dfrac{1}{a^2}+\dfrac{1}{4b^2}\right)\ge4\)
Câu 1: Rút gọn biểu thức
a) \(N=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
b) \(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Câu 2:
a) Cho a > 0. Chứng minh: \(a+\dfrac{1}{a}\ge2\)
b) Cho \(a\ge0\) , \(b\ge0\) . Chứng minh: \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
c) Cho a, b > 0. Chứng minh: \(\sqrt{a}+\sqrt{b}\le\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)
d) Chứng minh: \(\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a
chứng minh các bát đẳng thức sau
a)Cho a>0 chứng minh rằng \(a+\dfrac{1}{a}\)≥2
b)\(\dfrac{a^2+a+2}{\sqrt{a^2+a+1}}\)≥2
c)\(\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\)