Bài 1: Căn bậc hai

VC

cho a,b,c>0 thỏa mãn abc=1. chứng minh rằng

\(\dfrac{1}{1+a+b}+\dfrac{1}{1+b+c}+\dfrac{1}{1+c+a}\le\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\)

LF
28 tháng 10 2017 lúc 22:15

Đặt \(\left\{{}\begin{matrix}x=a+b+c\\y=ab+bc+ca\end{matrix}\right.\) khi đó \(BDT\Leftrightarrow\dfrac{x^2+4x+y+3}{x^2+2x+y+xy}\le\dfrac{12+4x+y}{9+4x+2y}\)

\(\Leftrightarrow\dfrac{x^2+4x+y+3}{x^2+2x+y+xy}-1\le\dfrac{12+4x+y}{9+4x+2y}-1\)

\(\Leftrightarrow\dfrac{2x+3-xy}{x^2+2x+y+xy}\le\dfrac{3-y}{9+4x+2y}\)

\(\Leftrightarrow\dfrac{5x^2-3x^2y-xy^2-6xy+24x+y^2+3y+27}{\left(4x+2y+9\right)\left(x^2+xy+2x+y\right)}\le0\)

Đúng vì \(\dfrac{5}{3}x^2y\ge5x^2;\dfrac{x^2y}{3}\ge y^2;xy^2\ge9x;5xy\ge15x;xy\ge3y;x^2y\ge27\)

Bình luận (0)

Các câu hỏi tương tự
VC
Xem chi tiết
VC
Xem chi tiết
PP
Xem chi tiết
PP
Xem chi tiết
BA
Xem chi tiết
PP
Xem chi tiết
SN
Xem chi tiết
PP
Xem chi tiết
VC
Xem chi tiết