Bài 7: Hình bình hành

T8

Cho ABC vuông tại A có AH có đường cao. Gọi D là điểm đối xứng của A qua H. Từ D
kẻ đường thẳng song song với AB lần lượt cắt AC và BC tại K và E.
a. Chứng minh tứ giác ABDK là hình thang vuông
b. Chứng minh tứ giác ABDE là hình bình hành

 

NM
7 tháng 10 2021 lúc 18:05

 

\(a,DK//AB\Rightarrow ABDK\) là hình thang

Mà \(\widehat{KAB}=90^0\) nên ABDK là hình thang vuông

\(b,\) Ta thấy EH,HD vừa là đg cao vừa là trung tuyến nên tg AED,EDB cân tại E,D

\(\Rightarrow\widehat{EAD}=\widehat{EDA}\) và HD là phân giác của tg EDB

\(\Rightarrow\widehat{EDA}=\widehat{ADB}\)

\(\Rightarrow\widehat{EAD}=\widehat{ADB}\)

Mà 2 góc này ở vị trí so le trong nên AE//BD

Mà ED//AB (gt)

Vậy ABDE là hbh

Bình luận (0)

Các câu hỏi tương tự
T8
Xem chi tiết
HL
Xem chi tiết
VD
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
LM
Xem chi tiết