Ta có:
\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{\left(ab+ac+b^2+bc\right)\left(c+a\right)}{abc}\)
\(=\dfrac{b^2\left(c+a\right)}{abc}=\dfrac{b\left(c+a\right)}{ac}=\dfrac{bc+ab}{ac}=\dfrac{-ac}{ac}=-1\)
Ta có: \(ab+bc+ca=0\) => \(bc+ca=-ab\)
Ta lại có: P = \(\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
= \(\dfrac{\left(a+b\right)\left(ba+bc+ca+c^2\right)}{abc}\) = \(\dfrac{\left(a+b\right)c^2}{abc}\) ( ab + ac+ bc = 0)
= \(\dfrac{ac^2+bc^2}{abc}\) = \(\dfrac{c\left(ac+bc\right)}{abc}\) = \(\dfrac{c.\left(-ab\right)}{abc}\) = \(-1\)
P/s: Bn có thể lm bài này theo 3 cách!