Bài 3: Liên hệ giữa phép nhân và phép khai phương

AA

Cho a,b,c > 0. Chứng minh:

a, a + b \(\ge2\sqrt{ab}\)

b, \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{ac}\)

AT
15 tháng 8 2018 lúc 19:51

a/ Xét hiệu: \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng) (đpcm)

''='' xảy ra khi a = b

b/ Sửa đề chút nhé: CMR:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\)

Áp dụng bđt AM-GM có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}\cdot\dfrac{1}{b}}=2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\);

Tương tự ta có:

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}}\); \(\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{ac}}\)

Cộng 2 vế ba bđt trên ta được:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\left(đpcm\right)\)

''='' xảy ra khi a = b = c

Bình luận (1)

Các câu hỏi tương tự
TV
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết
LM
Xem chi tiết
LC
Xem chi tiết
NC
Xem chi tiết
LQ
Xem chi tiết
TV
Xem chi tiết