a: Xét ΔMAB có MD là phan giác
nên MA/MB=AD/DB=MA/MC
Xét ΔMAC có ME là phân giác
nên MA/MC=AE/EC
=>AD/DB=AE/EC
=>DE//BC
b: Xét ΔAMB có OD//MB
nên OD/MB=AO/AM
Xét ΔAMC có OE//MC
nên OE/MC=AO/AM
=>OD/MB=OE/MC
mà MB=MC
nên OD=OE
a: Xét ΔMAB có MD là phan giác
nên MA/MB=AD/DB=MA/MC
Xét ΔMAC có ME là phân giác
nên MA/MC=AE/EC
=>AD/DB=AE/EC
=>DE//BC
b: Xét ΔAMB có OD//MB
nên OD/MB=AO/AM
Xét ΔAMC có OE//MC
nên OE/MC=AO/AM
=>OD/MB=OE/MC
mà MB=MC
nên OD=OE
Cho tam giác ABC có AM là trung tuyến, các đường phân giác của góc BMA và góc CMA cắt AB, AC tương ứng tại D và E.
a) Chứng minh rằng DE // BC
b) Gọi O là giao điểm của AM và DE. Chứng minh: OD = OE.
Cho tam giác ABC có AM là trung tuyến, các đường phân giác của góc
BMA và góc CMA cắt AB, AC tương ứng tại D và E.
a) Chứng minh rằng: DE// BC
b) Gọi O là giao điểm của AM và DE. Chứng minh: OD = OE.
Bài 1: Cho tam giác ABC có AM là trung tuyến, các đường phân giác của góc BMA và góc CMA cắt AB, AC tương ứng tại D và E.
a) Chứng minh rằng: DE// BC
b) Gọi O là giao điểm của AM và DE. Chứng minh: OD = OE
Cho tam giác ABC với đường trung tuyến AM. Tia phân giác của góc AMB cắt cạnh AB ở D, tia phân giác của góc AMC cắt cạnh AC ở E.
a) Chứng minh rằng DE // BC .
b) I là giao của AM và DE. Chứng minh DI = IE.
c) Gọi O là giao của DC và AM. Chứng minh B,O,E thẳng hang.
Cho ΔABC vuông tại A (AB < AC) có đường cao
AH và đường trung tuyến AM. Vẽ MD vuông góc với AB tại D và ME vuông góc với AC tại E.
a) Chứng minh DE // BC.
b) Gọi I là giao điểm của AH và DE. Chứng minh AH vuông góc
DE và I là trung điểm của AH (gợi ý: định lý song
song).
c) Chứng minh tứ giác EMBD là hình bình hành.
d) Chứng minh tứ giác DMHE là hình thang cân.
e) CD cắt AM tại G. Giả sử BC = 6cm. Tính độ dài AG.
cho tam giác ABC, trung tuyến AM, các tia phân giác của các góc AMB, AMC cắt AB, AC lần lượt ở D,E
a) Chứng minh DE // BC
b) Cho BC = 6 cm, AM = 5 cm. Tính DE?
c) Gọi I là giao điểm của AM và DE nếu tam giác ABC có BC cố định, AM không đổi thì điểm I chuyển động trên đường nào.
Cho tam giác ABC. AM là trung tuyến, phân giác của \(\widehat{BMA}\), \(\widehat{CMA}\)lần lượt cắt AB, Ac tại D và E a.CM: DE//BC
b. AM cắt DE tại O. Cm: OD=OE
Bài 1 Cho tam giác ABC có AM là trung truyến các đường phân giác của góc BMA và góc CMA cắt AB,AC tương ứng tại D và E
a) CMR DE //BC
b) Gọi O là giao điểm của AM và DE.Chứng minh. OD = OE
Bài 2 Tìm tất cả các cặp số nguyên thỏa mãn pt:
(12x-1)(6x-1)(4x-1)(3x-1)= 330
Mn giải hộ mk vs ☺
Cho tam giác ABC,có AM la trung tuyến,các đường phân giác của góc BMA va góc CMA cắt cạnh AB,AC tương ứng tại D và E.
a. Chứng minh:DE song song với BC
b. Gọi O là giao điểm cua hai đoạn thẳng AM và DE.Chứng minh:OD=OE
c. Chứng minh:DE=2MO
d. Gọi K là giao điểm của hai đường thẳng MD và AC