Bài 1: Căn bậc hai

DT

Cho a,b,c >0 tm abc=1 CMR

\(\frac{1}{(a+1)^2+b^2+1}+\frac{1}{(b+1)^2+c^2+1}\frac{1}{(c+1)^2+a^2+1} \le\frac{1}{2} \)

LF
22 tháng 10 2017 lúc 22:06

Ta có:

\(\left(a+1\right)^2+b^2+1=a^2+2a+b^2+2\)\(\ge2ab+2a+2\)

\(\Rightarrow\dfrac{1}{\left(a+1\right)^2+b^2+1}\le\dfrac{1}{2\left(ab+a+1\right)}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\dfrac{1}{\left(b+1\right)^2+c^2+1}\le\dfrac{1}{2\left(bc+b+1\right)};\dfrac{1}{\left(c+1\right)^2+a^2+1}\le\dfrac{1}{2\left(ca+c+1\right)}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\dfrac{1}{2}\left(\dfrac{1}{ab+a+1}+\dfrac{1}{bc+b+1}+\dfrac{1}{ca+c+1}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{bc}{b+1+bc}+\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{bc+b+1}{bc+b+1}=\dfrac{1}{2}=VP\)

Xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
HQ
Xem chi tiết
ND
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
DL
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
BM
Xem chi tiết
HT
Xem chi tiết