§1. Bất đẳng thức

H24

cho a,b,c >0 CMR

\(\frac{a^2}{x}\) +\(\frac{b^2}{y}\) +\(\frac{c^2}{z}\)\(\frac{\left(a+b+c\right)^2}{x+z+y}\)

AH
27 tháng 5 2019 lúc 21:53

Mình nghĩ CM bằng BĐT Bunhiacopxky đã là chi tiết rồi nhưng nếu bạn muốn chi tiết hơn nữa thì thế này:

Xét hiệu:\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)-(a+b+c)^2\)

\(=a^2+a^2.\frac{y}{x}+a^2.\frac{z}{x}+b^2+b^2.\frac{x}{y}+b^2.\frac{z}{y}+c^2+c^2.\frac{x}{z}+c^2.\frac{y}{z}-(a^2+b^2+c^2-2ab-2bc-2ac)\)

\(=(a^2.\frac{y}{x}+b^2.\frac{x}{y}-2ab)+(a^2.\frac{z}{x}+c^2.\frac{x}{z}-2ac)+(b^2.\frac{z}{y}+c^2.\frac{y}{z}-2bc)\)

\(=(a\sqrt{\frac{y}{x}}-b\sqrt{\frac{x}{y}})^2+(a\sqrt{\frac{z}{x}}-c\sqrt{\frac{x}{z}})^2+(b\sqrt{\frac{z}{y}}-c\sqrt{\frac{y}{z}})^2\geq 0\) với mọi $a,b,c,x,y,z>0$

Do đó:\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)\geq (a+b+c)^2\)

\(\Rightarrow \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\geq \frac{(a+b+c)^2}{x+y+z}\) (đpcm)


Bình luận (1)
AH
27 tháng 5 2019 lúc 21:40

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)(x+y+z)\geq (a+b+c)^2\)

\(\Rightarrow \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\geq \frac{(a+b+c)^2}{x+z+y}\) (đpcm)

Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Bình luận (2)

Các câu hỏi tương tự
ON
Xem chi tiết
TV
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
PN
Xem chi tiết
TN
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết