§1. Bất đẳng thức

LV

a) \(x^4+y^4\ge xy\left(x^2+y^2\right)\)với mọi x,y b) cho a,b,c>0 thoả mãn abc=1 tìm GTLN : A = \(\frac{a}{b^4+c^4+a}+\frac{b}{c^4+a^4+b}+\frac{c}{a^4+b^4+c}\)

TP
26 tháng 7 2019 lúc 12:00

a) \(x^4+y^4\ge xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow x=y\)

b) Áp dụng câu a) ta có :

\(b^4+c^4+a\ge bc\left(b^2+c^2\right)+a\)

Mặt khác : \(abc=1\Leftrightarrow bc=\frac{1}{a}\)

\(\Rightarrow b^4+c^4+a\ge\frac{b^2+c^2}{a}+a=\frac{a^2+b^2+c^2}{a}\)

\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a}{\frac{a^2+b^2+c^2}{a}}=\frac{a^2}{a^2+b^2+c^2}\)

Chứng minh tương tự :

\(\frac{b}{c^4+a^4+b}\le\frac{b^2}{a^2+b^2+c^2};\frac{c}{a^4+b^4+c}\le\frac{c^2}{a^2+b^2+c^2}\)

Cộng theo vế của 3 bất đẳng thức

\(\Rightarrow A\le\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
ON
Xem chi tiết
CC
Xem chi tiết
LC
Xem chi tiết
MM
Xem chi tiết
TV
Xem chi tiết
NA
Xem chi tiết
MM
Xem chi tiết
LC
Xem chi tiết
NC
Xem chi tiết