Bài 1: Căn bậc hai

PN

cho a,b,c >0 ; \(a+b+c=a^2+b^2+c^2=2\)

Tinnsh \(A=a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)

NL
4 tháng 3 2019 lúc 15:43

\(a+b+c=2\Rightarrow\left(a+b+c\right)^2=4\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)=4\)

\(\Rightarrow ab+ac+bc=\dfrac{4-\left(a^2+b^2+c^2\right)}{2}=\dfrac{4-2}{2}=1\)

\(\Rightarrow\left\{{}\begin{matrix}1+b^2=b^2+ab+ac+bc=\left(a+b\right)\left(b+c\right)\\1+c^2=c^2+ab+ac+bc=\left(a+c\right)\left(b+c\right)\\1+a^2=a^2+ab+ac+bc=\left(a+b\right)\left(a+c\right)\end{matrix}\right.\)

\(\Rightarrow a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}=a\sqrt{\dfrac{\left(b+c\right)^2\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}}=a\left(b+c\right)\)

Tương tự ta có: \(b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=b\left(a+c\right)\)

\(c\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}=c\left(a+b\right)\)

\(\Rightarrow A=a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)=2\left(ab+ac+bc\right)=2\)

Bình luận (0)

Các câu hỏi tương tự
VC
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
KM
Xem chi tiết
LH
Xem chi tiết
VQ
Xem chi tiết
MH
Xem chi tiết
LH
Xem chi tiết
NT
Xem chi tiết