§1. Bất đẳng thức

AD

Cho a,b>0 và ab=1 CMR \(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge3\)

 

NN
19 tháng 8 2016 lúc 23:03

Ta có: 

\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}\) . Do giả thiết cho \(ab=1\)

\(\Rightarrow\frac{a +b}{ab}+\frac{2}{a+b}=a+b+\frac{2}{a+b}=\frac{a+b}{2}+\frac{a+b}{2}+\frac{2}{a+b}\)

Áp dụng Bất đẳng thức Cô-si: \(\frac{x+y}{2}\ge\sqrt{xy}\)

Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}=1\)

Ta sẽ chứng minh BĐT phụ sau: với z >0 thì 

\(z+\frac{1}{z}\ge2\Leftrightarrow\frac{z^2+1-2z}{z}\ge0\Leftrightarrow\frac{\left(z-1\right)^2}{z}\ge0\)

Áp dụng BĐT trên => \(\frac{a+b}{2}+\frac{2}{a+b}\ge2\) (khi a+b>0)Vậy \(a+b+\frac{2}{a+b}\ge3\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge3\)

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LD
Xem chi tiết
NC
Xem chi tiết
VP
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
PN
Xem chi tiết
BK
Xem chi tiết
NN
Xem chi tiết