§1. Bất đẳng thức

BK

Cho a,b,c>0 thoả mãn a2+b2+c2=1

CMR: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^2+3ac+b^2}}\ge\sqrt{5}\left(a+b+c\right)\)

LF
21 tháng 1 2017 lúc 20:51

Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta có:

\(\begin{align*} \dfrac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}&\ge \dfrac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left (a^2+b^2 \right )}}\\ &=\dfrac{a^2+ab+1}{\sqrt{a^2+ab+1}}\\ &=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\\ &=\dfrac{1}{\sqrt{5}}\sqrt{\left ( \dfrac{9}{4}+\dfrac{3}{4}+1+1 \right )\left [\left ( a+\dfrac{b}{2} \right )^2+\dfrac{3b^2}{4}+a^2+c^2 \right ]}\\ &\ge \dfrac{1}{\sqrt{5}}\left [ \dfrac{3}{2}\left (a+\dfrac{b}{2} \right )+\dfrac{3}{4}b+a+c \right ]\\ &=\dfrac{1}{\sqrt{5}}\left ( \dfrac{5}{2}a+\dfrac{3}{2}b+c \right ) \end{align*}\)

Chứng minh tương tự, cộng lại ta có đpcm.

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Bình luận (4)
LF
21 tháng 1 2017 lúc 20:43

bài này cuốn hút thật, lâu lắm ms thấy . xí bài này nhé nghĩ đã lát quay lại làm

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
LC
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MH
Xem chi tiết
LF
Xem chi tiết