bài 1:
vì \(a+b\ge1\Leftrightarrow b\ge1-a\)
khi đó \(A\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2=2a+\dfrac{1}{4a}-\dfrac{1}{4}+1-2a+a^2\)
\(=a^2+\dfrac{1}{4a}+\dfrac{3}{4}=a^2+\dfrac{1}{8a}+\dfrac{1}{8a}+\dfrac{3}{4}\)
Áp dụng BĐT cauchy:\(a^2+\dfrac{1}{8a}+\dfrac{1}{8a}\ge3\sqrt[3]{a^2.\dfrac{1}{8a}.\dfrac{1}{8a}}=\dfrac{3}{4}\)
\(\Rightarrow A\ge\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\)
Dấu = xảy ra khi \(a^2=\dfrac{1}{8a}\Leftrightarrow a=\dfrac{1}{2}\Rightarrow b=\dfrac{1}{2}\)
Vậy AMIN=\(\dfrac{3}{2}\)khi \(a=b=\dfrac{1}{2}\)
\(Pt\Leftrightarrow x^4-2x^3+6x^2-32x+40=\left(2y-1\right)^2\)
\(\Leftrightarrow\left(x^2+2x+10\right)\left(x-2\right)^2=\left(2y-1\right)^2\)
cách of thím thế này hả