Vì OA=OC\(\Rightarrow\Delta AOC\) cân tại O
Vì OD=OB\(\Rightarrow\Delta BOD\) cân tại O
Mà: OA+ OB=AB
OC+ OD=CD
=> AB=CD( 2 đường chéo bằng nhau)
=> ACBD là hình thang cân
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Vì OA=OC\(\Rightarrow\Delta AOC\) cân tại O
Vì OD=OB\(\Rightarrow\Delta BOD\) cân tại O
Mà: OA+ OB=AB
OC+ OD=CD
=> AB=CD( 2 đường chéo bằng nhau)
=> ACBD là hình thang cân
Hai đoạn thẳng AB và CD cắt nhau tại O. Biết rằng OA = OC, OB = OD. Tứ giác ACBD là hình gì ? Vì sao ?
Hai đoạn thẳng AB và CD cắt nhau tại O. Biết rằng OA = OC, OB = OD. Tứ giác ACBD là hình gì ? Vì sao?
Hai đoạn thẳng AB và CD cắt nhau tại O. Biết rằng OA = OC, OB = OD. Tứ giác ACBD là hình gì ? Vì sao?
Cho tứ giác ABCD có AC cắt BD tại O ,biết OA=OB =OC=OD. Tứ giác ABCD là hình gì
Cho hình thang ABCD(AB/CD) AC cắt BD tại O a) Chứng minh: OA=OB b) OC=OD ( kẻ hình giúp mk nha)
Cho tứ giác ABCD có AC cắt BD tại O biết OA=OC, OB=OD.Chứng minh AB//CD, AD//BC.
Cho hình thang cân ABCD (AB//CD) . Gọi O là giao điểm của AC và BD . C/m rằng OC = OD , OA = OB
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 3.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 4. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 5. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA = OB, OC = OD ?