Rút gọn và tính giá trị các biểu thức :
a, \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\left(x>0\right)T\text{ại}:x=1\)
\(b,\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\) ( a > b > 2 ) tại a = 4 ; b = 3
c, \(ab^2.\sqrt{\dfrac{4}{a^2.b^4}}+ab\left(a;b\ne0;a>0\right)\) Tại a = 1 ; b = - 2
d,\(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\left(a;b>0\right)\) Tại a = 1 ; b = 2
1) Cho \(a^3-3a^2+2=\sqrt{b^3+3b^2}\) với \(a\ge2\) , cmr \(a^2-2a=b+2\)
2) Cho \(4a^3-3a+\left(b-1\right)\sqrt{2b+1}=0\) với \(-\frac{1}{2}\le0\) , cmr \(\sqrt{2b+1}+2a=0\)
3) Cho \(\left(4a^2+1\right)a+\left(b-3\right)\sqrt{5-2b}=0\) , cmr \(2b+4a^2=5\) với \(a\ge0\)
4) Cho \(a^2b\sqrt{1+b^2}-\sqrt{1+a^2}=a^2b-a\) với \(ab\ge0\) , cmr \(ab=1\)
- Mng giúp em với ạ, em cảm ơn.
Bài 1: Cho a,b>0; \(a^2+b^2\le16.\)Tìm GTLN của M= \(a\sqrt{9b\left(a+8b\right)}+b\sqrt{9a\left(b+8a\right)}\)
Bài 2: Cho a,b,c >\(\dfrac{25}{4}\). Tìm GTNN của P=\(\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\)
Bài 3: Cho a,b,b >0 và ab+bc+ca =1. Chứng minh:
\(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le2\left(a+b+c\right)\)
Bài 4: Cho 2 số thực a,b thay đổi, thỏa mãn điều kiện a+b\(\ge1\) và a>0. Tìm GTNN của A= \(\dfrac{8a^2+b}{4a}+b^2\)
Bài 5: Cho x,y thỏa mãn điều kiện \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3.\) Tìm GTNN của A= \(x^2+2xy-2y^2+2y+10\)
Bài 6: Với mọi a>1, chứng minh:
a+\(\dfrac{1}{a-1}\ge3\)
Cho a,b,c >0 thỏa a+b+c \(\ge9\)
Tìm Min:
\(P=2\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}+\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)
Cho a,b,c > 0 thỏa abc=1.Chứng minh :
\(P=\dfrac{1}{\sqrt{a\left(1+b\right)}}+\dfrac{1}{\sqrt{b\left(1+c\right)}}+\dfrac{1}{\sqrt{c\left(1+a\right)}}>2\)
Mấy bạn giúp mình bài này nha!
1) Tính A=(\(\sqrt{6}+\sqrt{2}\))*(\(\sqrt{3}-2\))*\(\sqrt{2+\sqrt{3}}\)
2) Cho x=4+\(\sqrt{10}\)
Tính A=\(\sqrt{3x+\sqrt{6x-1}}+\sqrt{3x-\sqrt{6x-1}}\)
3) Cho \(\sqrt{x}+\sqrt{y}-\sqrt{z}=0\)
CMR: \(\dfrac{1}{x+y-z}+\dfrac{1}{y+z-x}+\dfrac{1}{z+x-y}=0\)
4) Cho (\(\sqrt{x^2+5}+x\))*(\(\sqrt{y^2+5}+y\))=4
CMR: x+y=0
a)cho a>b>0 chứng minh rằng : \(\dfrac{1}{a+b}\le\dfrac{1}{2\sqrt{ab}}\)
b) Chứng minh \(\dfrac{\sqrt{2}-\sqrt{1}}{3}+\dfrac{\sqrt{3}-\sqrt{2}}{5}+\dfrac{\sqrt{4}-\sqrt{3}}{7}+...+\dfrac{\sqrt{2011}-\sqrt{2010}}{4021}< \dfrac{1}{2}\)
giúp mk vs
1. Cho A = \(\left(\dfrac{\sqrt{a}}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a) Rút gọn A.
b) Tìm a để A = 4; A\(>-6\).
c) Tính A khi \(a^2-3=0\).
2. Cho B = \(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\).
a) Rút gọn B.
b) Tính B khi a = \(\dfrac{\sqrt{6}}{2+\sqrt{6}}\).
c) Tìm a để \(\sqrt{B}>B\)
Câu 1: Cho biểu thức: P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}\)- \(\dfrac{5}{a+\sqrt{a}-6}\) + \(\dfrac{1}{2-\sqrt{a}}\) với a lớn hơn hoặc bằng 0, a # 4
a) Rút gọn P
b) Tìm a sao cho P < 1
c) Tìm a để P = \(\sqrt{2012}\)
Câu 2: Cho biểu thức P = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}\) + \(\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}\)- \(\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\) với x lớn hơn hoặc bằng 0, x # 1
a) Rút gọn P
b) Tìm x để P = \(\dfrac{1}{2}\)
c) CMR: P nhỏ hơn hoặc bằng \(\dfrac{2}{3}\)