Bài 8: Rút gọn biểu thức chứa căn bậc hai

MS

Cho A = \(\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)

a) Rút gọn A 

b) Tìm a để A <1

c) Tìm aϵ Z để A ϵ Z

AH
17 tháng 2 2021 lúc 13:59

Lời giải:ĐK: $a\geq 0; a\neq 9; a\neq 4$

a) 

\(A=\frac{2\sqrt{a}-9}{(\sqrt{a}-2)(\sqrt{a}-3)}-\frac{\sqrt{a}+3}{\sqrt{a}-2}+\frac{2\sqrt{a}+1}{\sqrt{a}-3}\)

\(\frac{2\sqrt{a}-9}{(\sqrt{a}-2)(\sqrt{a}-3)}-\frac{(\sqrt{a}+3)(\sqrt{a}-3)}{(\sqrt{a}-2)(\sqrt{a}-3)}+\frac{(2\sqrt{a}+1)(\ \sqrt{a}-2)}{(\sqrt{a}-3)(\sqrt{a}-2)}\)

\(=\frac{2\sqrt{a}-9-(a-9)+(2a-3\sqrt{a}-2)}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{a-\sqrt{a}-2}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{(\sqrt{a}-2)(\sqrt{a}+1)}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{\sqrt{a}+1}{\sqrt{a}-3}\)

b) Để \(A< 1\Leftrightarrow \frac{\sqrt{a}+1}{\sqrt{a}-3}<1\Leftrightarrow 1+\frac{4}{\sqrt{a}-3}<1\)

\(\Leftrightarrow \frac{4}{\sqrt{a}-3}< 0\Leftrightarrow \sqrt{a}-3< 0\Leftrightarrow 0\leq a< 9\)

Kết hợp ĐKXĐ: suy ra $0\leq a< 9; a\neq 4$

c) Với $a$ nguyên,  \(A=1+\frac{4}{\sqrt{a}-3}\in\mathbb{Z}\Leftrightarrow 4\vdots \sqrt{a}-3\)

$\Rightarrow \sqrt{a}-3\in\left\{\pm 1; \pm 2;\pm 4\right\}$

$\Rightarrow a\in\left\{4;16; 1;25; 49\right\}$

Kết hợp ĐKXĐ suy ra $a\in\left\{16;1;25;49\right\}$

 

Bình luận (0)
NT
17 tháng 2 2021 lúc 17:27

ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\notin\left\{4;9\right\}\end{matrix}\right.\)

a) Ta có: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)

\(=\dfrac{\left(2\sqrt{a}-9\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}-\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}+\dfrac{\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{2\sqrt{a}-9-\left(a-9\right)+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{2a-\sqrt{a}-11-a+9}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-2\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)+\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)

b) Để A<1 thì A-1<0

\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-1< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-\dfrac{\sqrt{a}-3}{\sqrt{a}-3}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\)

\(\Leftrightarrow\dfrac{4}{\sqrt{a}-3}< 0\)

mà 4>0

nên \(\sqrt{a}-3< 0\)

\(\Leftrightarrow\sqrt{a}< 3\)

hay a<9

Kết hợp ĐKXĐ, ta được:

\(\left\{{}\begin{matrix}0\le a< 9\\a\ne4\end{matrix}\right.\)

Vậy: Để A<1 thì \(\left\{{}\begin{matrix}0\le a< 9\\a\ne4\end{matrix}\right.\)

c) Để A nguyên thì \(\sqrt{a}+1⋮\sqrt{a}-3\)

\(\Leftrightarrow\sqrt{a}-3+4⋮\sqrt{a}-3\)

mà \(\sqrt{a}-3⋮\sqrt{a}-3\)

nên \(4⋮\sqrt{a}-3\)

\(\Leftrightarrow\sqrt{a}-3\inƯ\left(4\right)\)

\(\Leftrightarrow\sqrt{a}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

mà \(\sqrt{a}-3\ge-3\forall a\) thỏa mãn ĐKXĐ

nên \(\sqrt{a}-3\in\left\{1;-1;2;-2;4\right\}\)

\(\Leftrightarrow\sqrt{a}\in\left\{4;2;5;1;7\right\}\)

\(\Leftrightarrow a\in\left\{16;4;25;1;49\right\}\)

Kết hợp ĐKXĐ, ta được: \(a\in\left\{1;16;25;49\right\}\)

Vậy: Để A nguyên thì \(a\in\left\{1;16;25;49\right\}\)

Bình luận (0)

Các câu hỏi tương tự
MS
Xem chi tiết
HL
Xem chi tiết
KT
Xem chi tiết
NM
Xem chi tiết
LT
Xem chi tiết
HH
Xem chi tiết
LN
Xem chi tiết
NH
Xem chi tiết
VT
Xem chi tiết