Bài 1: Căn bậc hai

NH

cho a,b,c là số thực dương, tìm Max: \(\sqrt{\dfrac{a}{b+c+2a}}+\sqrt{\dfrac{b}{c+a+2b}}+\sqrt{\dfrac{c}{a+b+2c}}\)

AH
26 tháng 1 2018 lúc 11:02

Lời giải:

Đặt biểu thức đã cho là $A$

Ta có:

\(A=\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{a+c+2b}}+\sqrt{\frac{c}{a+b+2c}}\)

\(A=\sqrt{\frac{a}{(a+b)+(a+c)}}+\sqrt{\frac{b}{(b+c)+(b+a)}}+\sqrt{\frac{c}{(c+a)+(c+b)}}\)

Áp dụng BĐT AM-GM:

\(A\leq\sqrt{\frac{a}{2\sqrt{(a+b)(a+c)}}}+\sqrt{\frac{b}{2\sqrt{(b+c)(b+a)}}}+\sqrt{\frac{c}{2\sqrt{(c+a)(c+b)}}}\)

\(\Leftrightarrow A\leq \sqrt[4]{\frac{a^2}{4(a+b)(a+c)}}+\sqrt[4]{\frac{b^2}{4(b+c)(b+a)}}+\sqrt[4]{\frac{c^2}{4(c+a)(c+b)}}(*)\)

Tiếp tục áp dụng AM-GM:

\(\sqrt[4]{\frac{a^2}{4(a+b)(a+c)}}\leq \frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{1}{2}+\frac{1}{2}\right)\)

\(\sqrt[4]{\frac{b^2}{4(b+c)(b+a)}}\leq \frac{1}{4}\left(\frac{b}{b+c}+\frac{b}{a+b}+\frac{1}{2}+\frac{1}{2}\right)\)

\(\sqrt[4]{\frac{c^2}{4(c+a)(c+b)}}\leq \frac{1}{4}\left(\frac{c}{c+a}+\frac{c}{c+b}+\frac{1}{2}+\frac{1}{2}\right)\)

Cộng theo vế kết hợp với $(*)$

\(\Rightarrow A\leq \frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}+6.\frac{1}{2}\right)\)

\(\Leftrightarrow A\leq \frac{1}{4}.6=\frac{3}{2}\)

Vậy \(A_{\max}=\frac{3}{2}\Leftrightarrow a=b=c\)

Bình luận (0)
H24
4 tháng 9 2019 lúc 7:19

\(a=b=c\rightarrow P=\frac{3}{2}\). Ta se c/m do la gtln của P. Thật vậy:

\(\frac{1}{2}P=\sqrt{\frac{1}{4}.\frac{a}{b+c+2a}}+...\)

\(\le\frac{1}{2}\left(\frac{1}{4}+\frac{a}{b+c+2a}+\frac{1}{4}+\frac{b}{c+a+2b}+\frac{1}{4}+\frac{c}{a+b+2c}\right)\)

\(=\frac{1}{2}\left(\frac{3}{4}+\frac{a}{\left(b+a\right)+\left(c+a\right)}+\frac{b}{\left(c+b\right)+\left(b+a\right)}+\frac{c}{\left(c+a\right)+\left(c+b\right)}\right)\)

\(\le\frac{1}{2}\left[\frac{3}{4}+\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)\right]=\frac{3}{4}\)

Do đó \(P\le\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
HN
Xem chi tiết
CW
Xem chi tiết
PH
Xem chi tiết
MS
Xem chi tiết
PA
Xem chi tiết
M2
Xem chi tiết
KK
Xem chi tiết
MS
Xem chi tiết