đpcm\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\left(lđ\right)\)
Dấu bằng xảy ra khi a=b=c
đpcm\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\left(lđ\right)\)
Dấu bằng xảy ra khi a=b=c
cho a,b,c > 0 thỏa mãn a+b+c+ab+bc+ca=6abc
Cmr: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Cho a+b+c=1.cmr
a)a.b2 .c3 < 1:432
b) b+c > 16abc
c) (1-a)(1-b)(1-c) > 8abc
d)(a+b)(b+c)(a+c)> 8abc
e) a2 (1+b2)+b2(1+c2)+c2(1+a2) > 6abc
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
Cho a> 0, b>0, c>0 . CMR: a2 / ( a +b) + b2 / ( b +c ) + c2/ ( c +a ) >= ( a +b +c )/2
Cho a,b,c > 0. CMR:
\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\ge\dfrac{a+b+c}{2}\)
cho a,b,c >0 thỏa \(a^2+b^2+c^2=3\) cmr
\(\sqrt{\dfrac{a^2}{b+b^2+c}}+\sqrt{\dfrac{b^2}{c+c^2+a}}+\sqrt{\dfrac{c^2}{a+a^2+b}}\le\sqrt{3}\)
Giúp mình vs mai ktra rồi😭
Bài 1 : CMR: Với mọi a,b,c>0
1)Nếu (a/b)< 0 thì (a/b)<(a+c)/(b+c)
2)Nếu a/b nhỏ hơn hoặc bằng c/a thì (a/b) > (a+c)/(b+c)
3)Nếu (a/b) <1 => (a/b) <(a+c)/(b+c) <(c/d)
Bài2: Áp dụng (a/b)<1 => (a/b)<(a+c)/(b+c) với mọi a,b,c>0
CMR: [a/(b+a) ]+[b/(b+c)] +[c/(c+c)] <2
Bài 3: Cho a,b,c là 3 cạnh của ∆ ,CMR:
a) a^2 +b^2+c^2<2(ab+bc+ca)
b) abc lớn hơn hoặc bằng (a+b-c)(b+c-a)(a+a-b)
Cho \(a;b;c>0\). CMR \(\dfrac{a}{\sqrt{a^2+3bc}}+\dfrac{b}{\sqrt{b^2+3ac}}+\dfrac{c}{\sqrt{c^2+3ab}}\le\dfrac{9(a^2+b^2+c^2)}{2(a+b+c)^2}\)
Cho a,b,c>0. CMR: \(\dfrac{ab^2}{a^2+2b^2+c^2}+\dfrac{bc^2}{b^2+2c^2+a^2}+\dfrac{ca^2}{c^2+2a^2+b^2}\le\dfrac{a+b+c}{4}\)