Ôn tập chương 1: Căn bậc hai. Căn bậc ba

WE

Cho a, b ≥ 0. CMR: \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)

SG
13 tháng 10 2019 lúc 20:51

theo BĐT cô - si ta có :

\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\left(a\ge0,b\ge0\right)\)

\(\Leftrightarrow\)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\)\(a+b+a+b\ge2\sqrt{ab}+a+b\)

\(\Leftrightarrow\)\(2a+2b\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\)\(2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\)\(\frac{1}{4}\cdot2\cdot\left(a+b\right)\ge\frac{1}{4}\cdot\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}}\)

\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\) \(\left(đpcm\right)\)

Bình luận (0)
PQ
12 tháng 10 2019 lúc 18:07

Biến đổi tương đương đi

Bình luận (0)
H24
12 tháng 10 2019 lúc 19:21

BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\Leftrightarrow\frac{a-2\sqrt{ab}+b}{4}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\)(đúng)

Đẳng thức xảy ra khi a = b

P/s: em ko chắc..

Bình luận (0)

Các câu hỏi tương tự
AD
Xem chi tiết
AP
Xem chi tiết
BM
Xem chi tiết
TO
Xem chi tiết
QS
Xem chi tiết
H24
Xem chi tiết
CB
Xem chi tiết
AD
Xem chi tiết
LT
Xem chi tiết