A=3^1+3^2+...+3^2016 (1)
3A=3^2+3^3+....+3^2017 (2)
TRỪ VẾ VỚI VẾ CỦA (2) CHO (1)
3A-A=(3^2+3^3+...+3^2017)-(3^1+3^2+...+3^2016)
2A=3^2017-3
2A+3=3^2017
TA CÓ 2A+3=3^x
=>x=2017
=>
\(A=3^1+3^2+3^3+...+3^{2016}\)
\(3A=3^2+3^3+3^4+...+3^{2017}\)
\(3A-A=\left(3^2+3^3+3^4+..+3^{2017}\right)-\left(3^1+3^2+3^3+..+3^{2016}\right)\)
\(2A=3^{2017}-3^1\)
\(2A+3=3^{2017}\)
\(=>x=2017\)
Vậy x =2017
Chỗ kia mih viết thiếu