Cho \(\text{a,b,c,d }\ge1\) thỏa mãn abcd=4.Tìm giá trị nhỏ nhất :
\(P=\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}+\dfrac{1}{1+d}\)
cho a,b,c\(\le\dfrac{3}{2}\)
Tìm giá trị nhỏ nhất của
\(A=\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
b)tìm giá trị nguyên của x để A có giá trị nguyên
Cho a,b >0, a+b ≤1.Tìm giá trị nhỏ nhất của biểu thức S = \(\dfrac{a}{1+b}+\dfrac{b}{1+a}+\dfrac{1}{a+b}\)
Cho biểu thức A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a) Tìm điều kiện xác định của A;
b) Rút gọn A;
c) Tìm x để A< =-\(\dfrac{1}{3}\);
d) Tìm giá trị nhỏ nhất của A.
Cho a,b,c >0 thỏa a+b+c \(\ge9\)
Tìm Min:
\(P=2\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}+\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)
\(P=\left(\dfrac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
a) Rút gọn P (x > o, x khác 1)
b) Tìm giá trị của x để P > 0
1.Cho 2 biểu thức:
A=\(\dfrac{x+3}{\sqrt{x-2}}\) và B=\(\dfrac{\sqrt{x-1}}{\sqrt{x-2}}\)+ \(\dfrac{5\sqrt{x-2}}{x-4}\) với x>0, x≠4
a.Rút gọn B b.Tìm x để M=\(\dfrac{A}{B}\) đạt giá trị nhỏ nhất
2.Cho 2 biểu thức:
A=\(\dfrac{\sqrt{x+2}}{\sqrt{x+3}}\)và B=\(\dfrac{5}{x+\sqrt{x}-6}\)+\(\dfrac{1}{\sqrt{x}-2}\)
a.Rút gọn C=A-B b.Tìm x để C=\(-3\sqrt{x}\)
\(P=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
a) rút gọn P
b) tìm các giá trị nguyên của x để P có giá trị nguyên